Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 8(6): 557-67, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9592122

RESUMO

The polysaccharide chains of enterobacterial common antigen (ECA) consist of linear trisaccharide repeat units with the structure -->3)-alpha-d-Fuc4NAc-(1-->4)-beta-d-ManNAcA-(1--> 4)-alpha-d-GlcNAc-(1-->, where Fuc4NAc is 4-acetamido-4, 6-dideoxy-d-galactose, ManNAcA is N -acetyl-d- mannosaminuronic acid, and GlcNAc is N -acetyl-d-glucosamine. The major form of ECA (ECAPG) consists of polysaccharide chains that are believed to be covalently linked to diacylglycerol through phosphodiester linkage; the phospholipid moiety functions to anchor molecules in the outer membrane. The ECA trisaccharide repeat unit is assembled as a polyisoprenyl-linked intermediate which has been tentatively identified as Fuc4NAc-ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid III). Subsequent chain-elongation presumably occurs by a block-polymerization mechanism. However, the identity of the polyisoprenoid carrier-lipid has not been established. Accordingly, the current studies were conducted in an effort to structurally characterize the polyisoprenyl lipid-carrier involved in ECA synthesis. Isolation and characterization of the lipid carrier was facilitated by the accumulation of a ManNAcA-GlcNAc-pyrophosphorylpolyisoprenyl lipid (lipid II) in mutants of Salmonella typhimurium defective in the synthesis of TDP-Fuc4NAc, the donor of Fuc4NAc residues for ECA synthesis. Analyses of lipid II preparations by fast atom bombardment tandem mass spectroscopy (FAB-MS/MS) resulted in the identification of the lipid-carrier as the 55-carbon polyisoprenyl alcohol, undecaprenol. These analyses also resulted in the identification of a novel glycolipid which copurified with lipid II. FAB-MS/MS analyses of this glycolipid revealed its structure to be 1,2-diacyl- sn -glycero-3-pryophosphoryl-GlcNAc-ManNAcA (DGP-disaccharide). An examination of purified ECAPGby phosphorus-31 nuclear magnetic resonance spectroscopy confirmed that the polysaccharide chains are linked to diacylglycerol through phosphodiester linkage. Thus, DGP-disaccharide does not appear to be an intermediate in ECAPGsynthesis. Nevertheless, although the available evidence clearly indicate that lipid II is a precursor of DGP-disaccharide, the function of this novel glycolipid is not yet known, and it may be an intermediate in the biosynthesis of a molecule other than ECAPG.


Assuntos
Antígenos de Bactérias/química , Glicerofosfatos/química , Glicolipídeos/química , Salmonella typhimurium/genética , Antígenos de Bactérias/biossíntese , Sequência de Carboidratos , Enterobacteriaceae/imunologia , Glicerofosfatos/análise , Glicolipídeos/análise , Glicolipídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Mutação/genética , Isótopos de Fósforo , Salmonella typhimurium/química , Salmonella typhimurium/imunologia , Espectrometria de Massas de Bombardeamento Rápido de Átomos
2.
J Bacteriol ; 176(10): 2877-84, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-7514591

RESUMO

The Escherichia coli O8 antigen is a mannan composed of the trisaccharide repeat unit -->3)-alpha-Man-(1-->2)-alpha-Man-(1-->2)-alpha-Man-(1--> (K. Reske and K. Jann, Eur. J. Biochem. 67:53-56, 1972), and synthesis of the O8 antigen is rfe dependent (G. Schmidt, H. Mayer, and P. H. Mäkelä, J. Bacteriol. 127:755-762, 1976). The rfe gene has recently been identified as encoding a tunicamycin-sensitive UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase (U. Meier-Dieter, K. Barr, R. Starman, L. Hatch, and P. D. Rick, J. Biol. Chem. 267:746-753, 1992). However, the role of rfe in O8 side chain synthesis is not understood. Thus, the role of the rfe gene in the synthesis of the O8 antigen was investigated in an rfbO8+ (rfb genes encoding O8 antigen) derivative of E. coli K-12 mutant possessing a defective phosphoglucose isomerase (pgi). The in vivo synthesis of O8 side chains was inhibited by the antibiotic tunicamycin. In addition, putative lipid carrier-linked O8 side chains accumulated in vivo when lipopolysaccharide outer core synthesis was precluded by growing cells in the absence of exogenously supplied glucose. The lipid carrier-linked O8 antigen was extracted from cells and treated with mild acid in order to release free O8 side chains. The water-soluble O8 side chains were then purified by affinity chromatography using Sepharose-bound concanavalin A. Characterization of the affinity-purified O8 side chains revealed the occurrence of glucosamine in the reducing terminal position of the polysaccharide chains. The data presented suggest that GlcNAc-pyrophosphorylundecaprenol functions as the acceptor of mannose residues for the in vivo synthesis of O8 side chains in E. coli K-12.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/genética , Genes Bacterianos , Polissacarídeos Bacterianos/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Acetilglucosamina/metabolismo , Sistema Livre de Células , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Glucose-6-Fosfato , Glucofosfatos/farmacologia , Lipopolissacarídeos/metabolismo , Manose/metabolismo , Antígenos O , Tunicamicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...