Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 607(7917): 74-80, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794267

RESUMO

Vortices are the hallmarks of hydrodynamic flow. Strongly interacting electrons in ultrapure conductors can display signatures of hydrodynamic behaviour, including negative non-local resistance1-4, higher-than-ballistic conduction5-7, Poiseuille flow in narrow channels8-10 and violation of the Wiedemann-Franz law11. Here we provide a visualization of whirlpools in an electron fluid. By using a nanoscale scanning superconducting quantum interference device on a tip12, we image the current distribution in a circular chamber connected through a small aperture to a current-carrying strip in the high-purity type II Weyl semimetal WTe2. In this geometry, the Gurzhi momentum diffusion length and the size of the aperture determine the vortex stability phase diagram. We find that vortices are present for only small apertures, whereas the flow is laminar (non-vortical) for larger apertures. Near the vortical-to-laminar transition, we observe the single vortex in the chamber splitting into two vortices; this behaviour is expected only in the hydrodynamic regime and is not anticipated for ballistic transport. These findings suggest a new mechanism of hydrodynamic flow in thin pure crystals such that the spatial diffusion of electron momenta is enabled by small-angle scattering at the surfaces instead of the routinely invoked electron-electron scattering, which becomes extremely weak at low temperatures. This surface-induced para-hydrodynamics, which mimics many aspects of conventional hydrodynamics including vortices, opens new possibilities for exploring and using electron fluidics in high-mobility electron systems.

2.
Phys Rev Lett ; 127(8): 081802, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477436

RESUMO

The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) achieved efficient detection of very small recoil energies in its germanium target, resulting in sensitivity to lightly ionizing particles (LIPs) in a previously unexplored region of charge, mass, and velocity parameter space. We report first direct-detection limits calculated using the optimum interval method on the vertical intensity of cosmogenically produced LIPs with an electric charge smaller than e/(3×10^{5}), as well as the strongest limits for charge ≤e/160, with a minimum vertical intensity of 1.36×10^{-7} cm^{-2} s^{-1} sr^{-1} at charge e/160. These results apply over a wide range of LIP masses (5 MeV/c^{2} to 100 TeV/c^{2}) and cover a wide range of ßγ values (0.1-10^{6}), thus excluding nonrelativistic LIPs with ßγ as small as 0.1 for the first time.

3.
Phys Rev Lett ; 127(6): 061801, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420312

RESUMO

We present limits on spin-independent dark matter-nucleon interactions using a 10.6 g Si athermal phonon detector with a baseline energy resolution of σ_{E}=3.86±0.04(stat)_{-0.00}^{+0.19}(syst) eV. This exclusion analysis sets the most stringent dark matter-nucleon scattering cross-section limits achieved by a cryogenic detector for dark matter particle masses from 93 to 140 MeV/c^{2}, with a raw exposure of 9.9 g d acquired at an above-ground facility. This work illustrates the scientific potential of detectors with athermal phonon sensors with eV-scale energy resolution for future dark matter searches.

4.
Science ; 372(6548): 1323-1327, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34045322

RESUMO

Electrons in moiré flat band systems can spontaneously break time-reversal symmetry, giving rise to a quantized anomalous Hall effect. In this study, we use a superconducting quantum interference device to image stray magnetic fields in twisted bilayer graphene aligned to hexagonal boron nitride. We find a magnetization of several Bohr magnetons per charge carrier, demonstrating that the magnetism is primarily orbital in nature. Our measurements reveal a large change in the magnetization as the chemical potential is swept across the quantum anomalous Hall gap, consistent with the expected contribution of chiral edge states to the magnetization of an orbital Chern insulator. Mapping the spatial evolution of field-driven magnetic reversal, we find a series of reproducible micrometer-scale domains pinned to structural disorder.

5.
Nanoscale ; 12(5): 3174-3182, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31967152

RESUMO

Scanning nanoscale superconducting quantum interference devices (nanoSQUIDs) are of growing interest for highly sensitive quantitative imaging of magnetic, spintronic, and transport properties of low-dimensional systems. Utilizing specifically designed grooved quartz capillaries pulled into a sharp pipette, we have fabricated the smallest SQUID-on-tip (SOT) devices with effective diameters down to 39 nm. Integration of a resistive shunt in close proximity to the pipette apex combined with self-aligned deposition of In and Sn, has resulted in SOTs with a flux noise of 42 nΦ0 Hz-1/2, yielding a record low spin noise of 0.29 µB Hz-1/2. In addition, the new SOTs function at sub-Kelvin temperatures and in high magnetic fields of over 2.5 T. Integrating the SOTs into a scanning probe microscope allowed us to image the stray field of a single Fe3O4 nanocube at 300 mK. Our results show that the easy magnetization axis direction undergoes a transition from the 〈111〉 direction at room temperature to an in-plane orientation, which could be attributed to the Verwey phase transition in Fe3O4.

7.
Phys Rev Lett ; 121(5): 051301, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118251

RESUMO

We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 g CDMS high-voltage device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/c^{2}. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 g d). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.

8.
Phys Rev Lett ; 120(6): 061802, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481237

RESUMO

We report the result of a blinded search for weakly interacting massive particles (WIMPs) using the majority of the SuperCDMS Soudan data set. With an exposure of 1690 kg d, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP-nucleon cross section of 1.4×10^{-44} (1.0×10^{-44}) cm^{2} at 46 GeV/c^{2}. These results set the strongest limits for WIMP-germanium-nucleus interactions for masses >12 GeV/c^{2}.

9.
Nature ; 551(7678): 75-79, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094693

RESUMO

Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

10.
Nat Commun ; 8(1): 85, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729642

RESUMO

Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.Ultrafast vortex dynamics driven by strong currents define eletromagnetic properties of superconductors, but it remains unexplored. Here, Embon et al. use a unique scanning microscopy technique to image steady-state penetration of super-fast vortices into a superconducting Pb film at rates of tens of GHz and velocities up to tens of km/s.

12.
Nat Commun ; 7: 12566, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558907

RESUMO

Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that are absent in the parent compounds. A prominent example is the appearance of highly conducting and superconducting states at the interface between LaAlO3 and SrTiO3. Here we report an emergent phenomenon at the LaMnO3/SrTiO3 interface where an antiferromagnetic Mott insulator abruptly transforms into a nanoscale inhomogeneous magnetic state. Upon increasing the thickness of LaMnO3, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic nanoislands, which display thermally activated moment reversals in response to an in-plane magnetic field. The observed superparamagnetic state manifests the emergence of thermodynamic electronic phase separation in which metallic ferromagnetic islands nucleate in an insulating antiferromagnetic matrix. We derive a model that captures the sharp onset and the thickness dependence of the magnetization. Our model suggests that a nearby superparamagnetic-ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics.

13.
Phys Rev Lett ; 116(7): 071301, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943526

RESUMO

The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^{2}.

14.
Physiotherapy ; 101(4): 389-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26050135

RESUMO

OBJECTIVE: To test the reliability and validity of shoulder joint angle measurements from the Microsoft Kinect™ for virtual rehabilitation. DESIGN: Test-retest reliability and concurrent validity, feasibility study. SETTING: Motion analysis laboratory. PARTICIPANTS: A convenience sample of 10 healthy adults. METHODS: Shoulder joint angle was assessed in four static poses, two trials for each pose, using: (1) the Kinect; (2) a three-dimensional motion analysis system; and (3) a clinical goniometer. All poses were captured with the Kinect from the frontal view. The two poses of shoulder flexion were also captured with the Kinect from the sagittal view. MAIN OUTCOME MEASURES: Absolute and relative test-retest reliability of the Kinect for the measurement of shoulder angle was determined in each pose with intraclass correlation coefficients (ICCs), standard error of the measure and minimal detectable change. The 95% limits of agreement (LOA) between the Kinect and the standard methods for measuring shoulder angle were computed to determine concurrent validity. RESULTS: While the Kinect provided to be highly reliable (ICC 0.76-0.98) for measuring shoulder angle from the frontal view, the 95% LOA between the Kinect and the two measurement standards were greater than ±5° in all poses for both views. CONCLUSIONS: Before the Kinect is used to measure movements for virtual rehabilitation applications, it is imperative to understand its limitations in precision and accuracy for the measurement of specific joint motions.


Assuntos
Modalidades de Fisioterapia/normas , Articulação do Ombro/anatomia & histologia , Fenômenos Biomecânicos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Amplitude de Movimento Articular , Reprodutibilidade dos Testes , Interface Usuário-Computador , Adulto Jovem
15.
Phys Rev Lett ; 114(11): 111302, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839256

RESUMO

While the standard model of particle physics does not include free particles with fractional charge, experimental searches have not ruled out their existence. We report results from the Cryogenic Dark Matter Search (CDMS II) experiment that give the first direct-detection limits for cosmogenically produced relativistic particles with electric charge lower than e/6. A search for tracks in the six stacked detectors of each of two of the CDMS II towers finds no candidates, thereby excluding new parameter space for particles with electric charges between e/6 and e/200.

16.
Sci Rep ; 5: 7598, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564043

RESUMO

The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

17.
Phys Rev Lett ; 112(24): 241302, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24996080

RESUMO

We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg days was analyzed for WIMPs with mass <30 GeV/c(2), with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2×10(-42) cm(2) at 8 GeV/c(2). This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses <6 GeV/c(2).

18.
Phys Rev Lett ; 112(4): 041302, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580434

RESUMO

SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

19.
Nature ; 502(7471): 346-9, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24132291

RESUMO

Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.

20.
Phys Rev Lett ; 111(25): 251301, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24483735

RESUMO

We report results of a search for weakly interacting massive particles (WIMPS) with the silicon detectors of the CDMS II experiment. This blind analysis of 140.2 kg day of data taken between July 2007 and September 2008 revealed three WIMP-candidate events with a surface-event background estimate of 0.41(-0.08)(+0.20)(stat)(-0.24)(+0.28)(syst). Other known backgrounds from neutrons and 206Pb are limited to <0.13 and <0.08 events at the 90% confidence level, respectively. The exposure of this analysis is equivalent to 23.4 kg day for a recoil energy range of 7-100 keV for a WIMP of mass 10 GeV/c2. The probability that the known backgrounds would produce three or more events in the signal region is 5.4%. A profile likelihood ratio test of the three events that includes the measured recoil energies gives a 0.19% probability for the known-background-only hypothesis when tested against the alternative WIMP+background hypothesis. The highest likelihood occurs for a WIMP mass of 8.6 GeV/c2 and WIMP-nucleon cross section of 1.9×10(-41) cm2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...