Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(3): 103878, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243240

RESUMO

The Balbiani body (Bb), an organelle comprised of mitochondria, ER, and RNA, is found in the oocytes of most organisms. In Xenopus, the structure is initially positioned immediately adjacent to the nucleus, extends toward the vegetal pole, and eventually disperses, leaving behind a region highly enriched in mitochondria. This area is later transversed by RNP complexes that are being localized to the vegetal cortex. Inhibition of mitochondrial ATP synthesis prevents perinuclear formation of the transport complexes that can be reversed by a nonhydrolyzable ATP analog, indicating the nucleotide is acting as a hydrotrope. The protein composition, sensitivity to hexanediol, and coalescence in the absence of transport provide evidence that the transport RNP complexes are biocondensates. The breakdown of the Bb engenders regions of clustered mitochondria that are used not to meet extraordinary energy demands, but rather to promote a liquid-liquid phase separation.

2.
Anal Chem ; 94(7): 3254-3259, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143156

RESUMO

We report both the design of a high-throughput MICROFASP (a miniaturized filter aided sample preparation) system and its use for the comprehensive proteomic analysis of single blastomeres isolated from 50-cell stage Xenopus laevis embryos (∼200 ng of yolk-free protein/blastomere). A single run of the MICROFASP system was used to process 146 of these blastomeres in parallel. Three samples failed to generate signals presumably due to membrane clogging. Two cells were lost due to operator error. Of the surviving samples, 32 were analyzed using a Q Exactive HF mass spectrometer in survey experiments (data not included). The 109 remaining blastomeres were analyzed using a capillary LC-ESI-MS/MS system coupled to an Orbitrap Fusion Lumos mass spectrometer, which identified a total of 4189 protein groups and 40,998 unique peptides. On average, 3468 ± 229 protein groups and 14,525 ± 2437 unique peptides were identified from each blastomere, which is the highest throughput and deepest proteome coverage to date of single blastomeres at this stage of development. We also compared two dissociation buffers, Newport and calcium-magnesium-free (CMFM) buffers; the two buffers generated similar numbers of protein identifications (3615 total protein IDs from use of the Newport dissociation buffer and 3671 total protein IDs from use of the CMFM buffer).


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Proteoma/análise , Análise de Célula Única , Xenopus laevis/metabolismo
3.
Mol Omics ; 16(3): 210-220, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32149324

RESUMO

Glycans are known to be involved in many biological processes, while little is known about the expression of N-glycans during vertebrate development. We now report the first quantitative studies of both the expression of N-linked glycans at six early development stages and the expression of N-glycosylated peptides at two early development stages in Xenopus laevis, the African clawed frog. N-Glycans were labeled with isobaric tandem mass tags, pooled, separated by capillary electrophoresis, and characterized using tandem mass spectrometry. We quantified 110 N-glycan compositions that spanned four orders of magnitude in abundance. Capillary electrophoresis was particularly useful in identifying charged glycans; over 40% of the observed glycan compositions were sialylated. The glycan expression was relatively constant until the gastrula-neurula transition (developmental stage 13), followed by massive reprogramming. An increase in oligomannosidic and a decrease in the paucimannosidic and phosphorylated oligomannosidic glycans were observed at the late tailbud stage (developmental stage 41). Two notable and opposing regulation events were detected for sialylated glycans. LacdiNAc and Lewis antigen features distinguished down-regulated sialylation from up-regulated species. The level of Lewis antigen decreased at later stages, which was validated by Aleuria aurantia lectin (AAL) and Ulex europaeus lectin (UEA-I) blots. We also used HPLC coupled with tandem mass spectrometry to identify 611 N-glycosylation sites on 350 N-glycoproteins at the early stage developmental stage 1 (fertilized egg), and 1682 N-glycosylation sites on 1023 N-glycoproteins at stage 41 (late tailbud stage). Over two thirds of the N-glycoproteins identified in the late tailbud stage are associated with neuron projection morphogenesis, suggesting a vital role of the N-glycome in neuronal development.


Assuntos
Glicômica/métodos , Proteínas de Xenopus/química , Xenopus/crescimento & desenvolvimento , Animais , Eletroforese Capilar , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Antígenos do Grupo Sanguíneo de Lewis/análise , Masculino , Oligossacarídeos/análise , Fosforilação , Espectrometria de Massas em Tandem
4.
Anal Chem ; 92(7): 5554-5560, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32125139

RESUMO

We report a miniaturized filter aided sample preparation method (micro-FASP) for low-loss preparation of submicrogram proteomic samples. The method employs a filter with ∼0.1 mm2 surface area, reduces the total volume of reagents to <10 µL, and requires only two sample transfer steps. The method was used to generate 25 883 unique peptides and 3069 protein groups from 1000 MCF-7 cells (∼100 ng protein content), and 13 367 peptides and 1895 protein groups were identified from 100 MCF-7 cells (∼10 ng protein content). Single blastomeres from Xenopus laevis embryos at the 50-cell stage (∼200 ng yolk free protein/blastomere) generated 20 943 unique peptides and 2597 protein groups; the proteomic profile clearly differentiated left and right blastomeres and provides strong support for models in which this asymmetry is established early in the embryo. The parallel processing of 12 samples demonstrates reproducible label free quantitation of 1 µg protein homogenates.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Embrião não Mamífero/metabolismo , Filtração , Limite de Detecção , Miniaturização/métodos , Proteômica , Xenopus laevis/embriologia , Animais , Contagem de Células
5.
Talanta ; 204: 138-144, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357275

RESUMO

Xenopus laevis is an important model organism for vertebrate development. An extensive literature has developed on changes in transcript expression during development of this organism, and there is a growing literature on the corresponding protein expression changes during development. In contrast, there is very little information on changes in metabolite expression during development. We present the first MALDI mass-spectrometry images of metabolites within the developing embryo. These images were generated for 142 metabolite ions. The images were subjected to an algorithm that revealed three spatially-resolved clusters of metabolites. One small cluster is localized near the outer membrane of the embryo. A large cluster of metabolites is found in cavities destined to form the neural tube and gut, and contains a number of ceramide species, which are associated with cellular signaling, including differentiation, proliferation, and programmed cell death. Another large cluster of metabolites is found in tissue and is dominated by phosphatidylcholines, which are common components of cell membranes. Surprisingly, no metabolites appear to be homogeneously distributed across the slices; metabolites are localized either within tissue or in cavities, but not both.


Assuntos
Embrião não Mamífero/metabolismo , Xenopus laevis/embriologia , Animais , Embrião não Mamífero/química , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
BMC Genomics ; 20(1): 386, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101013

RESUMO

BACKGROUND: Adenovirus protein, Gam1, triggers the proteolytic destruction of the E1 SUMO-activating enzyme. Microinjection of an empirically determined amount of Gam1 mRNA into one-cell Xenopus embryos can reduce SUMOylation activity to undetectable, but nonlethal, levels, enabling an examination of the role of this post-translational modification during early vertebrate development. RESULTS: We find that SUMOylation-deficient embryos consistently exhibit defects in neural tube and heart development. We have measured differences in gene expression between control and embryos injected with Gam1 mRNA at three developmental stages: early gastrula (immediately following the initiation of zygotic transcription), late gastrula (completion of the formation of the three primary germ layers), and early neurula (appearance of the neural plate). Although changes in gene expression are widespread and can be linked to many biological processes, three pathways, non-canonical Wnt/PCP, snail/twist, and Ets-1, are especially sensitive to the loss of SUMOylation activity and can largely account for the predominant phenotypes of Gam1 embryos. SUMOylation appears to generate different pools of a given transcription factor having different specificities with this post-translational modification involved in the regulation of more complex, as opposed to housekeeping, processes. CONCLUSIONS: We have identified changes in gene expression that underlie the neural tube and heart phenotypes resulting from depressed SUMOylation activity. Notably, these developmental defects correspond to the two most frequently occurring congenital birth defects in humans, strongly suggesting that perturbation of SUMOylation, either globally or of a specific protein, may frequently be the origin of these pathologies.


Assuntos
Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Defeitos do Tubo Neural/genética , Sumoilação , Proteínas de Xenopus/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Feminino , Perfilação da Expressão Gênica , Cardiopatias Congênitas/patologia , Masculino , Defeitos do Tubo Neural/patologia , Proteínas Virais/administração & dosagem , Xenopus laevis
7.
Curr Drug Targets ; 20(9): 960-969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30362419

RESUMO

Post-translational modification by small ubiquitin-like modifier (SUMO) has emerged as a global mechanism for the control and integration of a wide variety of biological processes through the regulation of protein activity, stability and intracellular localization. As SUMOylation is examined in greater detail, it has become clear that the process is at the root of several pathologies including heart, endocrine, and inflammatory disease, and various types of cancer. Moreover, it is certain that perturbation of this process, either globally or of a specific protein, accounts for many instances of congenital birth defects. In order to be successful, practical strategies to ameliorate conditions due to disruptions in this post-translational modification will need to consider the multiple components of the SUMOylation machinery and the extraordinary number of proteins that undergo this modification.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos dos fármacos , Animais , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/efeitos dos fármacos
8.
Sci Rep ; 8(1): 17393, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30459361

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

9.
J Mater Chem B ; 6(30): 4963-4971, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30858977

RESUMO

Cell death is a central process in developmental biology and also an important indicator of disease status and treatment efficacy. Two related fluorescent probes are described that are molecular conjugates of one or two zinc dipicolylamine (ZnDPA) coordination complexes with an appended solvatochromic benzothiazolium squaraine dye. The probes were designed to target the anionic phospholipid, phosphatidylserine (PS), that is exposed on the surface of dead and dying cells. A series of spectrometric and microscopy studies using liposomes and red blood cell ghosts as models showed that the probe with two ZnDPA targeting units produced higher affinity, stronger fluorescence "turn-on" effect, and better image contrast than the probe with one ZnDPA. Both fluorescent probes enabled "no-wash" time-lapse microscopic imaging of mammalian cell death within a culture. The probe with two ZnDPA units was used for non-invasive time-lapse imaging of cell death during the development of Xenopus laevis (frog) embryos. In vivo fluorescence micrographs revealed probe accumulation within the embryo tail, head and spine regions that were undergoing regression and apoptosis during growth and maturation. These new fluorescent probes are likely to be useful for time-resolved, non-invasive in vivo imaging of cell death process in range of living organisms. From a broader perspective, it should be possible to utilize the negative solvatochromism exhibited by benzothiazolium squaraine dyes for development of various "turn-on" deep-red fluorescent probes and materials that target cell surface biomarkers for in vitro and in vivo imaging.

10.
Sci Rep ; 7(1): 15647, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142207

RESUMO

The earliest stages of animal development are largely controlled by changes in protein phosphorylation mediated by signaling pathways and cyclin-dependent kinases. In order to decipher these complex networks and to discover new aspects of regulation by this post-translational modification, we undertook an analysis of the X. laevis phosphoproteome at seven developmental stages beginning with stage VI oocytes and ending with two-cell embryos. Concurrent measurement of the proteome and phosphoproteome enabled measurement of phosphosite occupancy as a function of developmental stage. We observed little change in protein expression levels during this period. We detected the expected phosphorylation of MAP kinases, translational regulatory proteins, and subunits of APC/C that validate the accuracy of our measurements. We find that more than half the identified proteins possess multiple sites of phosphorylation that are often clustered, where kinases work together in a hierarchical manner to create stretches of phosphorylated residues, which may be a means to amplify signals or stabilize a particular protein conformation. Conversely, other proteins have opposing sites of phosphorylation that seemingly reflect distinct changes in activity during this developmental timeline.


Assuntos
Desenvolvimento Embrionário/genética , Oócitos/crescimento & desenvolvimento , Fosfoproteínas/genética , Xenopus laevis/genética , Animais , Embrião não Mamífero , Espectrometria de Massas , Oócitos/metabolismo , Fosforilação , Proteoma , Proteômica , Transdução de Sinais/genética , Xenopus laevis/crescimento & desenvolvimento
11.
Anal Chem ; 88(13): 6653-7, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27314579

RESUMO

Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 µg (16-cell embryo) to ∼0.2 µg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development.


Assuntos
Proteoma/análise , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Xenopus laevis/metabolismo , Animais , Blastômeros/citologia , Blastômeros/metabolismo , Diferenciação Celular , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Proteoma/isolamento & purificação , Análise de Célula Única , Xenopus laevis/crescimento & desenvolvimento
12.
Anal Chem ; 88(1): 877-82, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26670623

RESUMO

A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.


Assuntos
Reatores Biológicos , Eletroforese Capilar , Proteínas de Xenopus/análise , Xenopus laevis/embriologia , Zigoto/química , Animais , Cátions/química , Concentração de Íons de Hidrogênio , Dióxido de Silício/química , Ácidos Sulfônicos/química , Espectrometria de Massas em Tandem , Tripsina/metabolismo
13.
Mol Hum Reprod ; 22(3): 193-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26396253

RESUMO

Modern mass spectrometry-based methods provide an exciting opportunity to characterize protein expression in the developing embryo. We have employed an isotopic labeling technology to quantify the expression dynamics of nearly 6000 proteins across six stages of development in Xenopus laevis from the single stage zygote through the mid-blastula transition and the onset of organogenesis. Approximately 40% of the proteins show significant changes in expression across the development stages. The expression changes for these proteins naturally falls into six clusters corresponding to major events that mark early Xenopus development. A subset of experiments in this study have quantified protein expression differences between single embryos at the same stage of development, showing that, within experimental error, embryos at the same developmental stage have identical protein expression levels.


Assuntos
Proteômica , Xenopus laevis/embriologia , Animais , Evolução Molecular , Proteoma , Proteômica/métodos , Xenopus laevis/metabolismo
14.
Org Biomol Chem ; 13(8): 2341-9, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25562392

RESUMO

The ability to specifically engineer metal binding sites into target proteins has far-reaching consequences ranging from the development of new biocatalysts and imaging reagents to the production of proteins with increased stability. We report the efficient tRNA-mediated incorporation of the hydroxamate containing amino acid, N(ε)-acetyl-N(ε)-hydroxy-L-lysine, into a transcription factor (TFIIIA). Because this amino acid is compact, hydrophilic, and uncharged at physiological pH, it should have little or no effect on protein folding or solubility. The N(ε)-hydroxy group of the hydroxamate is refractory to photodeprotection and required the identification of reagents for O-protection that are compatible with the synthesis of acylated tRNA. Tetrahydrofuranyl and tetrahydropyranyl O-protecting groups can be removed using mild acid conditions and allowed for an orthogonal protection strategy in which deprotection of the amino acid side chain precedes ligation of an acylated dinucleotide to a truncated suppressor tRNA. These protecting groups will provide a valuable alternative for O-protection, especially in cases where photodeprotection cannot be used.


Assuntos
Aminoácidos/química , Furanos/química , Ácidos Hidroxâmicos/química , Piranos/química , RNA de Transferência/síntese química , Aminoacilação , Conformação Molecular , RNA de Transferência/química
15.
J Biol Chem ; 289(51): 35468-81, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25368327

RESUMO

The 5 S rRNA gene-specific transcription factor IIIA (TFIIIA) interacts with the small ubiquitin-like modifier (SUMO) E3 ligase PIAS2b and with one of its targets, the transcriptional corepressor, XCtBP. PIAS2b is restricted to the cytoplasm of Xenopus oocytes but relocates to the nucleus immediately after fertilization. Following the midblastula transition, PIAS2b and XCtBP are present on oocyte-type, but not somatic-type, 5 S rRNA genes up through the neurula stage, as is a limiting amount of TFIIIA. Histone H3 methylation, coincident with the binding of XCtBP, also occurs exclusively on the oocyte-type genes. Immunohistochemical staining of embryos confirms the occupancy of a subset of the oocyte-type genes by TFIIIA that become positioned at the nuclear periphery shortly after the midblastula transition. Inhibition of SUMOylation activity relieves repression of oocyte-type 5 S rRNA genes and is correlated with a decrease in methylation of H3K9 and H3K27 and disruption of subnuclear localization. These results reveal a novel function for TFIIIA as a negative regulator that recruits histone modification activity through the CtBP repressor complex exclusively to the oocyte-type 5 S rRNA genes, leading to their terminal repression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , RNA Ribossômico 5S/genética , Xenopus laevis/genética , Animais , Western Blotting , Núcleo Celular/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Histonas/metabolismo , Imuno-Histoquímica , Lisina/metabolismo , Metilação , Microscopia Confocal , Oócitos/citologia , Ligação Proteica , Sumoilação , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia
16.
Sci Rep ; 4: 4365, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24626130

RESUMO

While there is a rich literature on transcription dynamics during the development of many organisms, protein data is limited. We used iTRAQ isotopic labeling and mass spectrometry to generate the largest developmental proteomic dataset for any animal. Expression dynamics of nearly 4,000 proteins of Xenopus laevis was generated from fertilized egg to neurula embryo. Expression clusters into groups. The cluster profiles accurately reflect the major events that mark changes in gene expression patterns during early Xenopus development. We observed decline in the expression of ten DNA replication factors after the midblastula transition (MBT), including a marked decline of the licensing factor XCdc6. Ectopic expression of XCdc6 leads to apoptosis; temporal changes in this protein are critical for proper development. Measurement of expression in single embryos provided no evidence for significant protein heterogeneity between embryos at the same stage of development.


Assuntos
Embrião não Mamífero/metabolismo , Proteoma , Proteômica , Xenopus laevis/metabolismo , Animais , Análise por Conglomerados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Proteômica/métodos , Análise de Célula Única
17.
RNA ; 19(7): 889-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645708

RESUMO

The 3' untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.


Assuntos
Oócitos/citologia , Fosfoproteínas/genética , RNA Mensageiro/genética , Transativadores/genética , Xenopus/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Mutagênese Sítio-Dirigida , Fosfoproteínas/metabolismo , Ligação Proteica , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
18.
Biochemistry ; 50(18): 3827-39, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21446704

RESUMO

The structure of the eukaryotic L5-5S rRNA complex was investigated in protection and interference experiments and is compared with the corresponding structure (L18-5S rRNA) in the Haloarcula marismortui 50S subunit. In close correspondence with the archaeal structure, the contact sites for the eukaryotic ribosomal protein are located primarily in helix III and loop C and secondarily in loop A and helix V. While the former is unique to L5, the latter is also a critical contact site for transcription factor IIIA (TFIIIA), accounting for the mutually exclusive binding of these two proteins to 5S RNA. The binding of L5 causes structural changes in loops B and C that expose nucleotides that contact the Xenopus L11 ortholog in H. marismortui. This induced change in the structure of the RNA reveals the origins of the cooperative binding to 5S rRNA that has been observed for the bacterial counterparts of these proteins. The native structure of helix IV and loop D antagonizes binding of L5, indicating that this region of the RNA is dynamic and also influenced by the protein. Examination of the crystal structures of Thermus thermophilus ribosomes in the pre- and post-translocation states identified changes in loop D and in the surrounding region of 23S rRNA that support the proposal that 5S rRNA acts to transmit information between different functional domains of the large subunit.


Assuntos
RNA Ribossômico 5S/genética , Proteínas Ribossômicas/química , Animais , Sítios de Ligação , Cristalografia por Raios X/métodos , Endorribonucleases/química , Proteínas Fúngicas/química , Haloarcula marismortui/metabolismo , Radical Hidroxila , Nucleosídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , RNA Ribossômico 23S/química , RNA Ribossômico 5S/química , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Xenopus
19.
Methods ; 51(1): 82-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20093187

RESUMO

There is a remarkable variety of mechanisms for controlling post-transcriptional gene expression that is achieved through the formation of ribonucleoprotein (RNP) complexes on specific cis-acting regions of mRNA. These complexes regulate splicing, nuclear and cytoplasmic polyadenylation, stability, localization, and translation. Thus, it is important to be able to detect the association of specific proteins with specific RNAs within the context of these RNP complexes. We describe a method to test for protein-RNA complexes in Xenopus oocytes. The procedure combines immunoprecipitation with reverse transcription-PCR (RT-PCR) and does not entail chemical or photo crosslinking. Microinjected mRNA is efficiently translated in Xenopus oocytes; thus, in cases where primary antibody is not available, an epitope-tagged version of the protein can be expressed for utilization in this procedure. The inclusion of control mRNAs has provided no evidence of nonspecific protein reassociation to RNA during or subsequent to cell lysis. The method has been used to document the association of certain trans-acting factors specifically with localized mRNAs in Xenopus oocytes.


Assuntos
Proteínas/química , RNA/química , Ribonucleoproteínas/química , Xenopus/metabolismo , Animais , Técnicas Citológicas , Epitopos/química , Imunoprecipitação , Oócitos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sefarose/química
20.
Mech Dev ; 126(7): 523-38, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19345262

RESUMO

Proline rich RNA-binding protein (Prrp), which associates with mRNAs that employ the late pathway for localization in Xenopus oocytes, was used as bait in a yeast two-hybrid screen of an expression library. Several independent clones were recovered that correspond to a paralog of 40LoVe, a factor required for proper localization of Vg1 mRNA to the vegetal cortex. 40LoVe is present in at least three alternatively spliced isoforms; however, only one, corresponding to the variant identified in the two-hybrid screen, can be crosslinked to Vg1 mRNA. In vitro binding assays revealed that 40LoVe has high affinity for RNA, but exhibits little binding specificity on its own. Nonetheless, it was only found associated with localized mRNAs in oocytes. 40LoVe also interacts directly with VgRBP71 and VgRBP60/hnRNP I; it is the latter factor that likely determines the binding specificity of 40LoVe. Initially, 40LoVe binds to Vg1 mRNA in the nucleus and remains with the RNA in the cytoplasm. Immunohistochemical staining of oocytes shows that the protein is distributed between the nucleus and cytoplasm, consistent with nucleocytoplasmic shuttling activity. 40LoVe is excluded from the mitochondrial cloud, which is used by RNAs that localize through the early (METRO) pathway in stage I oocytes; nonetheless, it is associated with at least some early pathway RNAs during later stages of oogenesis. A phylogenetic analysis of 2xRBD hnRNP proteins combined with other experimental evidence suggests that 40LoVe is a distant homolog of Drosophila Squid.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Fator de Crescimento Transformador beta/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/genética , Espaço Intracelular/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Oócitos/metabolismo , Oogênese , Filogenia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...