Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1966: 39-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041738

RESUMO

Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-seq) is a powerful tool to map context-dependent genome-wide binding of nuclear hormone receptors and their coregulators. This information can provide important mechanistic insight into where, when and how DNA-protein interactions are linked to target gene regulation. Here we describe a simple, yet reliable ChIP-seq method, including nuclear isolation from frozen tissue samples, cross-linking DNA-protein complexes, chromatin shearing, immunoprecipitation, and purification of ChIP DNA. We also include a standard ChIP-seq data analysis pipeline to elaborate and analyze raw single-end or paired-end sequencing data, including quality control steps, peak calling, annotation, and motif enrichment.


Assuntos
Imunoprecipitação da Cromatina/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , DNA/metabolismo , Humanos , Análise de Sequência de DNA/métodos
2.
PLoS Biol ; 16(8): e2005886, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096135

RESUMO

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos/fisiologia , Músculo Esquelético/fisiologia , Aminoácidos/metabolismo , Aminoácidos/fisiologia , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Expressão Gênica , Homeostase , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...