Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Biol ; 18(1): 90, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32698880

RESUMO

BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.


Assuntos
Adaptação Biológica , Evolução Biológica , Genoma de Inseto/fisiologia , Hemípteros/genética , Adaptação Biológica/genética , Distribuição Animal , Animais , Espécies Introduzidas , Vitis
3.
BMC Genomics ; 17: 219, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26968158

RESUMO

BACKGROUND: Grapevine phylloxera, an insect related to true aphids, is a major historic pest of viticulture only controlled through the selection of resistant rootstocks or through quarantine regulations where grapevine is cultivated own-rooted. Transcriptomic data could help understand the bases of its original life-traits, including a striking case of polyphenism, with forms feeding on roots and forms feeding in leaf-galls. Comparisons with true aphids (for which complete genomes have been sequenced) should also allow to link differences in life-traits of the two groups with changes in gene repertoires or shifts in patterns of expression. RESULTS: We sequenced transcriptomes of the grapevine phylloxera (Illumina technology), choosing three life-stages (adults on roots or on leaf galls, and eggs) to cover a large catalogue of transcripts, and performed a de novo assembly. This resulted in 105,697 contigs, which were annotated: most contigs had a best blastx hit to the pea aphid (phylogenetically closest complete genome), while very few bacterial hits were recorded (except for Probionibacterium acnes). Coding sequences were predicted from this data set (17,372 sequences), revealing an extremely high AT-bias (at the third codon position). Differential expression (DE) analysis among root-feeding and gall-feeding showed that i) the root-feeding form displayed a much larger number of differentially expressed transcripts ii) root-feeding biased genes were enriched in some categories, for example cuticular proteins and genes associated with cell-cell signaling iii) leaf-galling-biased genes were enriched in genes associated with the nucleus and DNA-replication, suggesting a metabolism more oriented towards fast and active multiplication. We also identified a gene family with a very high expression level (copies totaling nearly 10% of the reads) in the grapevine phylloxera (both in root and leaf galling forms), but usually expressed at very low levels in true aphids (except in sexual oviparous females). These transcripts thus appear to be associated with oviparity. CONCLUSIONS: Our study illustrated major intraspecific changes in transcriptome profiles, related with different life-styles (and the feeding on roots versus in leaf-galls). At a different scale, we could also illustrate one major shift in expression levels associated with changes in life-traits that occurred along evolution and that respectively characterize (strictly oviparous) grapevine phylloxera and (mostly viviparous) true aphids.


Assuntos
Comportamento Alimentar , Insetos/genética , Transcriptoma , Vitis , Animais , Mapeamento de Sequências Contíguas , Feminino , Genes de Insetos , Insetos/fisiologia , Família Multigênica , Oviparidade , Filogenia
4.
PLoS One ; 9(6): e97620, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24896814

RESUMO

UNLABELLED: Aphids constitute a diverse group of plant-feeding insects and are among the most important crop pests in temperate regions. Their morphological identification is time-consuming and requires specific knowledge, training and skills that may take years to acquire. We assessed the advantages and limits of DNA barcoding with the standard COI barcode fragment for the identification of European aphids. We constructed a large reference dataset of barcodes from 1020 specimens belonging to 274 species and 87 genera sampled throughout Europe and set up a database-driven website allowing species identification from query sequences. RESULTS: In this unbiased sampling of the taxonomic diversity of European aphids, intraspecific divergence ranged from 0.0% to 3.9%, with a mean value of 0.29%, whereas mean congeneric divergence was 6.4%, ranging from 0.0% to 15%. Neighbor-joining analysis generated a tree in which most species clustered in distinct genetic units. Most of the species with undifferentiated or overlapping barcodes belonged to the genus Aphis or, to a lesser extent, the genera Brachycaudus, Dysaphis and Macrosiphum. The taxa involved were always morphologically similar or closely related and belonged to species groups known to present taxonomic difficulties. CONCLUSIONS: These data confirm that COI barcoding is a useful identification tool for aphids. Barcode identification is straightforward and reliable for 80% of species, including some difficult to distinguish on the basis of morphological characters alone. Unsurprisingly, barcodes often failed to distinguish between species from groups for which classical taxonomy has also reached its limits, leading to endless revisions and discussions about species and subspecies definitions. In such cases, the development of an effective procedure for the accurate identification of aphid specimens continues to pose a difficult challenge.


Assuntos
Afídeos/genética , Código de Barras de DNA Taxonômico , Animais , Bases de Dados Genéticas , Europa (Continente) , Filogenia , Análise de Sequência de DNA
5.
Mol Biol Evol ; 25(1): 5-17, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17934209

RESUMO

Aphids exclusively feed on plant phloem sap that contains much sugar and some nonessential amino acids but is poor in lipids and proteins. Conventionally, it has been believed that aphids substantially have no intestinal digestion of proteins. However, we here report an unexpected finding that cysteine protease genes of the family cathepsin B are massively amplified in the lineage of aphids and that many of the protease genes exhibit gut-specific overexpression. By making use of expressed sequence tag data, sequenced cDNAs, and genomic trace sequences of the pea aphid Acyrthosiphon pisum, we identified a total of 28 cathepsin B-like gene copies in the genome of A. pisum. Phylogenetic analyses of all the cathepsin B genes in aphids revealed that genic expansion has continuously proceeded with basal, intermediary, and recent duplications. Estimation of molecular evolutionary rates indicated that major alterations of the rates often occurred after duplications. For example, a gene copy ("348") was shown to be slow evolving and close to genes of other insects like Drosophila melanogaster, whereas the other gene copies appeared to have evolved faster with higher ratios of nonsynonymous to synonymous substitutions. We identified a number of gene copies (16 in A. pisum) that contained a replacement at the site required for catalytic activity of the protease. Among these, 2 copies were pseudogenes, whereas the remaining copies were structurally intact and possibly acquired new functions. For example, a cluster of such gene copies ("1674") has been subjected to positive selection. Quantitative reverse transcriptase-polymerase chain reaction analyses revealed that the more conserved gene copy ("348") showed a constitutive expression, whereas 5 other forms ("84," "16," "16D," "1874," and "2744") were preferentially expressed in the gut of A. pisum. Putative biological roles of the diversified cathepsin B-like gene copies in aphids are discussed in relation to their nutritional physiology specialized for plant sap feeding lifestyle.


Assuntos
Afídeos/genética , Catepsinas/genética , Dosagem de Genes/fisiologia , Genoma de Inseto/fisiologia , Proteínas de Insetos/genética , Família Multigênica/fisiologia , Serina Endopeptidases/genética , Animais , Afídeos/metabolismo , Catepsina G , Catepsinas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Comportamento Alimentar/fisiologia , Proteínas de Insetos/metabolismo , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...