Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1341333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595917

RESUMO

Butyrate, a metabolite produced by gut bacteria, has demonstrated beneficial effects in the colon and has been used to treat inflammatory bowel diseases. However, the mechanism by which butyrate operates remains incompletely understood. Given that oral butyrate can exert either a direct impact on the gut mucosa or an indirect influence through its interaction with the gut microbiome, this study aimed to investigate three key aspects: (1) whether oral intake of butyrate modulates the expression of genes encoding short-chain fatty acid (SCFA) transporters (Slc16a1, Slc16a3, Slc16a4, Slc5a8, Abcg2) and receptors (Hcar2, Ffar2, Ffar3, Olfr78, Olfr558) in the colon, (2) the potential involvement of gut microbiota in this modulation, and (3) the impact of oral butyrate on the expression of colonic SCFA transporters and receptors during colonic inflammation. Specific pathogen-free (SPF) and germ-free (GF) mice with or without DSS-induced inflammation were provided with either water or a 0.5% sodium butyrate solution. The findings revealed that butyrate decreased the expression of Slc16a1, Slc5a8, and Hcar2 in SPF but not in GF mice, while it increased the expression of Slc16a3 in GF and the efflux pump Abcg2 in both GF and SPF animals. Moreover, the presence of microbiota was associated with the upregulation of Hcar2, Ffar2, and Ffar3 expression and the downregulation of Slc16a3. Interestingly, the challenge with DSS did not alter the expression of SCFA transporters, regardless of the presence or absence of microbiota, and the effect of butyrate on the transporter expression in SPF mice remained unaffected by DSS. The expression of SCFA receptors was only partially affected by DSS. Our results indicate that (1) consuming a relatively low concentration of butyrate can influence the expression of colonic SCFA transporters and receptors, with their expression being modulated by the gut microbiota, (2) the effect of butyrate does not appear to result from direct substrate-induced regulation but rather reflects an indirect effect associated with the gut microbiome, and (3) acute colon inflammation does not lead to significant changes in the transcriptional regulation of most SCFA transporters and receptors, with the effect of butyrate in the inflamed colon remaining intact.

2.
Front Immunol ; 15: 1330094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361932

RESUMO

Microbiota plays a role in shaping the HPA-axis response to psychological stressors. To examine the role of microbiota in response to acute immune stressor, we stimulated the adaptive immune system by anti-CD3 antibody injection and investigated the expression of adrenal steroidogenic enzymes and profiling of plasma corticosteroids and their metabolites in specific pathogen-free (SPF) and germ-free (GF) mice. Using UHPLC-MS/MS, we showed that 4 hours after immune challenge the plasma levels of pregnenolone, progesterone, 11-deoxycorticosterone, corticosterone (CORT), 11-dehydroCORT and their 3α/ß-, 5α-, and 20α-reduced metabolites were increased in SPF mice, but in their GF counterparts, only CORT was increased. Neither immune stress nor microbiota changed the mRNA and protein levels of enzymes of adrenal steroidogenesis. In contrast, immune stress resulted in downregulated expression of steroidogenic genes (Star, Cyp11a1, Hsd3b1, Hsd3b6) and upregulated expression of genes of the 3α-hydroxysteroid oxidoreductase pathway (Akr1c21, Dhrs9) in the testes of SPF mice. In the liver, immune stress downregulated the expression of genes encoding enzymes with 3ß-hydroxysteroid dehydrogenase (HSD) (Hsd3b2, Hsd3b3, Hsd3b4, Hsd3b5), 3α-HSD (Akr1c14), 20α-HSD (Akr1c6, Hsd17b1, Hsd17b2) and 5α-reductase (Srd5a1) activities, except for Dhrs9, which was upregulated. In the colon, microbiota downregulated Cyp11a1 and modulated the response of Hsd11b1 and Hsd11b2 expression to immune stress. These data underline the role of microbiota in shaping the response to immune stressor. Microbiota modulates the stress-induced increase in C21 steroids, including those that are neuroactive that could play a role in alteration of HPA axis response to stress in GF animals.


Assuntos
Sistema Hipotálamo-Hipofisário , Microbiota , Masculino , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Espectrometria de Massas em Tandem , Sistema Hipófise-Suprarrenal/metabolismo , Esteroides/metabolismo , Corticosterona/metabolismo
3.
Carbohydr Polym ; 313: 120880, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182970

RESUMO

The ability of hyaluronan as a dietary supplement to increase skin moisture and relieve knee pain has been demonstrated in several clinical studies. To understand the mechanism of action, determining hyaluronan's bioavailability and in vivo fate is crucial. Here, we used 13C-hyaluronan combined with LC-MS analysis to compare the absorption and metabolism of oral hyaluronan in germ-free and conventional wild-type mice. The presence of Bacteroides spp. in the gut was crucial for hyaluronan absorption. Specific microorganisms cleave hyaluronan into unsaturated oligosaccharides (<3 kDa) which are partially absorbed through the intestinal wall. The remaining hyaluronan fragments are metabolized into short-chain fatty acids, which are only metabolites available to the host. The poor bioavailability (~0.2 %) of oral hyaluronan indicates that the mechanism of action is the result of the systematic regulatory function of hyaluronan or its metabolites rather than the direct effects of hyaluronan at distal sites of action (skin, joints).


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Disponibilidade Biológica , Ácido Hialurônico/farmacologia , Peso Molecular , Pele/metabolismo
4.
Microbes Infect ; 25(7): 105146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37142116

RESUMO

PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla. The restriction of repertoire diversification occurs in both helper and cytotoxic αß-T cells. As a result, critical viral epitopes are tolerated, and infection becomes chronic. However, not all viral epitopes are tolerated. Infected piglets develop antibodies capable of recognizing PRRSV, but these are not virus neutralizing. Further analysis showed that the lack of an effective immune response against the critical viral structures results in the absence of a germinal center response, overactivation of T and B cells in the periphery, robust production of useless antibodies of all isotypes, and the inability to eliminate the virus. Overall, the results show how a respiratory virus that primarily infects and destroys myelomonocytic cells has evolved strategies to disrupt the immune system. These mechanisms may be a prototype for how other viruses can similarly modulate the host immune system.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Anticorpos Antivirais , Epitopos , Linfócitos B
5.
Eur J Immunol ; 53(7): e2250135, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177812

RESUMO

The currently observed high prevalence of allergic diseases has been associated with changes in microbial exposure in industrialized countries. Defined bacterial components represent a new strategy for modulating the allergic immune response. We show that intranasal administration of exopolysaccharide (EPS) isolated from Lacticaseibacillus (L.) rhamnosus LOCK900 induces TGF-ß1, IgA, and regulatory FoxP3+ T-cells in the lungs of naïve mice. Using the ovalbumin mouse model, we demonstrate that intranasal administration of EPS downregulates the development of allergic airway inflammation and the Th2 cytokine response in sensitized individuals. At the same time, EPS treatment of sensitized mice, similar to EPS-induced responses in naïve mice, significantly increased the level of total, OVA-specific, and also bacteria-specific IgA in bronchoalveolar lavage and the number of IgA-producing B-cells in the lung tissue of these mice. Thus, EPS derived from L. rhamnosus LOCK900 can be considered a safe candidate for preventing the development of allergic symptoms in the lungs of sensitized individuals upon exposure to an allergen.


Assuntos
Hipersensibilidade , Lacticaseibacillus rhamnosus , Animais , Camundongos , Lacticaseibacillus , Pulmão , Inflamação , Modelos Animais de Doenças , Imunoglobulina A , Ovalbumina , Camundongos Endogâmicos BALB C , Líquido da Lavagem Broncoalveolar
6.
Mucosal Immunol ; 16(4): 373-385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36739089

RESUMO

Interleukin (IL)-17 protects epithelial barriers by inducing the secretion of antimicrobial peptides. However, the effect of IL-17 on Paneth cells (PCs), the major producers of antimicrobial peptides in the small intestine, is unclear. Here, we show that the targeted ablation of the IL-17 receptor (IL-17R) in PCs disrupts their antimicrobial functions and decreases the frequency of ileal PCs. These changes become more pronounced after colonization with IL-17 inducing segmented filamentous bacteria. Mice with PCs that lack IL-17R show an increased inflammatory transcriptional profile in the ileum along with the severity of experimentally induced ileitis. These changes are associated with a decrease in the diversity of gut microbiota that induces a severe ileum pathology upon transfer to genetically susceptible mice, which can be prevented by the systemic administration of IL-17a/f in microbiota recipients. In an exploratory analysis of a small cohort of pediatric patients with Crohn's disease, we have found that a portion of these patients exhibits a low number of lysozyme-expressing ileal PCs and a high ileitis severity score, resembling the phenotype of mice with IL-17R-deficient PCs. Our study identifies IL-17R-dependent signaling in PCs as an important mechanism that maintains ileal homeostasis through the prevention of dysbiosis.


Assuntos
Ileíte , Microbiota , Receptores de Interleucina-17 , Animais , Criança , Humanos , Camundongos , Peptídeos Antimicrobianos , Disbiose/microbiologia , Ileíte/microbiologia , Íleo/microbiologia , Inflamação/patologia , Interleucina-17 , Celulas de Paneth/patologia , Receptores de Interleucina-17/genética
7.
Science ; 379(6634): 826-833, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821686

RESUMO

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Assuntos
Microbioma Gastrointestinal , Crescimento , Intestinos , Lactobacillaceae , Desnutrição , Proteína Adaptadora de Sinalização NOD2 , Animais , Camundongos , Parede Celular/química , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Transtornos do Crescimento/fisiopatologia , Transtornos do Crescimento/terapia , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Lactobacillaceae/fisiologia , Desnutrição/fisiopatologia , Desnutrição/terapia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Crescimento/efeitos dos fármacos , Crescimento/fisiologia , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Acetilmuramil-Alanil-Isoglutamina/uso terapêutico
8.
Nutrients ; 15(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36678325

RESUMO

Fecal microbiota transfer may serve as a therapeutic tool for treating obesity and related disorders but currently, there is no consensus regarding the optimal donor characteristics. We studied how microbiota from vegan donors, who exhibit a low incidence of non-communicable diseases, impact on metabolic effects of an obesogenic diet and the potential role of dietary inulin in mediating these effects. Ex-germ-free animals were colonized with human vegan microbiota and fed a standard or Western-type diet (WD) with or without inulin supplementation. Despite the colonization with vegan microbiota, WD induced excessive weight gain, impaired glucose metabolism, insulin resistance, and liver steatosis. However, supplementation with inulin reversed steatosis and improved glucose homeostasis. In contrast, inulin did not affect WD-induced metabolic changes in non-humanized conventional mice. In vegan microbiota-colonized mice, inulin supplementation resulted in a significant change in gut microbiota composition and its metabolic performance, inducing the shift from proteolytic towards saccharolytic fermentation (decrease of sulfur-containing compounds, increase of SCFA). We found that (i) vegan microbiota alone does not protect against adverse effects of WD; and (ii) supplementation with inulin reversed steatosis and normalized glucose metabolism. This phenomenon is associated with the shift in microbiota composition and accentuation of saccharolytic fermentation at the expense of proteolytic fermentation.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Camundongos , Animais , Humanos , Transplante de Microbiota Fecal , Veganos , Inulina/farmacologia , Fibras na Dieta/farmacologia , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Dieta Ocidental , Glucose/farmacologia
9.
Front Immunol ; 14: 1292381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283357

RESUMO

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective: We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods: We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results: Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion: The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Anticorpos Antivirais , Vacinas Atenuadas , Sistema Imunitário
10.
BMC Biol ; 20(1): 290, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575413

RESUMO

BACKGROUND: Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS: We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS: Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Drosophila melanogaster/genética , Drosophila , Mamíferos , Simbiose
11.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232929

RESUMO

Several studies have indicated the beneficial anti-inflammatory effect of butyrate in inflammatory bowel disease (IBD) therapy implying attempts to increase butyrate production in the gut through orally administered dietary supplementation. Through the gut-liver axis, however, butyrate may reach directly the liver and influence the drug-metabolizing ability of hepatic enzymes, and, indirectly, also the outcome of applied pharmacotherapy. The focus of our study was on the liver microsomal cytochrome P450 (CYP) 2A5, which is a mouse orthologue of human CYP2A6 responsible for metabolism of metronidazole, an antibiotic used to treat IBD. Our findings revealed that specific pathogen-free (SPF) and germ-free (GF) mice with dextran sulfate sodium (DSS)-induced colitis varied markedly in enzyme activity of CYP2A and responded differently to butyrate pre-treatment. A significant decrease (to 50%) of the CYP2A activity was observed in SPF mice with colitis; however, an administration of butyrate prior to DSS reversed this inhibition effect. This phenomenon was not observed in GF mice. The results highlight an important role of gut microbiota in the regulation of CYP2A under inflammatory conditions. Due to the role of CYP2A in metronidazole metabolism, this phenomenon may have an impact on the IBD therapy. Butyrate administration, hence, brings promising therapeutic potential for improving symptoms of gut inflammation; however, possible interactions with drug metabolism need to be further studied.


Assuntos
Butiratos , Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Metronidazol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
12.
Front Pharmacol ; 13: 936013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928257

RESUMO

The development of inflammatory bowel disease (IBD) is associated with alterations in the gut microbiota. There is currently no universal treatment for this disease, thus emphasizing the importance of developing innovative therapeutic approaches. Gut microbiome-derived metabolite butyrate with its well-known anti-inflammatory effect in the gut is a promising candidate. Due to increased intestinal permeability during IBD, butyrate may also reach the liver and influence liver physiology, including hepatic drug metabolism. To get an insight into this reason, the aim of this study was set to clarify not only the protective effects of the sodium butyrate (SB) administration on colonic inflammation but also the effects of SB on hepatic drug metabolism in experimental colitis induced by dextran sodium sulfate (DSS) in mice. It has been shown here that the butyrate pre-treatment can alleviate gut inflammation and reduce the leakiness of colonic epithelium by restoration of the assembly of tight-junction protein Zonula occludens-1 (ZO-1) in mice with DSS-induced colitis. In this article, butyrate along with inflammation has also been shown to affect the expression and enzyme activity of selected cytochromes P450 (CYPs) in the liver of mice. In this respect, CYP3A enzymes may be very sensitive to gut microbiome-targeted interventions, as significant changes in CYP3A expression and activity in response to DSS-induced colitis and/or butyrate treatment have also been observed. With regard to medications used in IBD and microbiota-targeted therapeutic approaches, it is important to deepen our knowledge of the effect of gut inflammation, and therapeutic interventions were followed concerning the ability of the organism to metabolize drugs. This gut-liver axis, mediated through inflammation as well as microbiome-derived metabolites, may affect the response to IBD therapy.

13.
J Chromatogr Sci ; 60(1): 81-87, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33876238

RESUMO

Metronidazole is a drug used to treat bacterial and protozoan infections. Nowadays, it is one of the most frequently prescribed drugs worldwide. The main aim of this paper is to present a rapid, reliable and simple high-performance liquid chromatography (HPLC) method to determine metronidazole along with its primary metabolite, 2-hydroxymetronidazole, in plasma or serum using paracetamol as an internal standard. A total of 100% methanol was used to denature plasma proteins. After centrifugation, the supernatant was evaporated under nitrogen flow. The samples were dissolved in the mobile phase and injected into a Li-Chrospher RP-18 column. A total of 10 mmol/L NaH2PO4: acetonitrile (90:10, v/v) solution with a flow rate of 1 mL/min was used as the mobile phase. Metronidazole and 2-hydroxymetronidazole were detected at two different wavelengths at 320 nm and 311 nm, respectively. The method is characterized by high precision (relative standard deviation % < 6). The method was used for the determination of metronidazole and 2-hydroxymetronidazole in murine blood using small amounts of plasma (≤100 µL).


Assuntos
Metronidazol , Plasma , Animais , Cromatografia Líquida de Alta Pressão , Metronidazol/análogos & derivados , Camundongos
14.
PLoS One ; 16(11): e0259643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752478

RESUMO

Microbiome is now considered as a significant metabolic organ with an immense potential to influence overall human health. A number of diseases that are associated with pharmacotherapy interventions was linked with altered gut microbiota. Moreover, it has been reported earlier that gut microbiome modulates the fate of more than 30 commonly used drugs and, vice versa, drugs have been shown to affect the composition of the gut microbiome. The molecular mechanisms of this mutual relationship, however, remain mostly elusive. Recent studies indicate an indirect effect of the gut microbiome through its metabolites on the expression of biotransformation enzymes in the liver. The aim of this study was to analyse the effect of gut microbiome on the fate of metronidazole in the mice through modulation of system of drug metabolizing enzymes, namely by alteration of the expression and activity of selected cytochromes P450 (CYPs). To assess the influence of gut microbiome, germ-free mice (GF) in comparison to control specific-pathogen-free (SPF) mice were used. First, it has been found that the absence of microbiota significantly affected plasma concentration of metronidazole, resulting in higher levels (by 30%) of the parent drug in murine plasma of GF mice. Further, the significant interaction between presence/absence of the gut microbiome and effect of metronidazole application, which together influence mRNA expression of CAR, PPARα, Cyp2b10 and Cyp2c38 was determined. Administration of metronidazole itself influenced significantly mRNA expression of Cyp1a2, Cyp2b10, Cyp2c38 and Cyp2d22. Finally, GF mice have shown lower level of enzyme activity of CYP2A and CYP3A than their SPF counterparts. The results hence have shown that, beside direct bacterial metabolism, different expression and enzyme activity of hepatic CYPs in the presence/absence of gut microbiota may be responsible for the altered metronidazole metabolism.


Assuntos
Microbioma Gastrointestinal , Animais , Fígado , Metronidazol , Camundongos
15.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921780

RESUMO

Glucocorticoids (GCs) are hormones that are released in response to stressors and exhibit many activities, including immunomodulatory and anti-inflammatory activities. They are primarily synthesized in the adrenal gland but are also produced in peripheral tissues via regeneration of adrenal 11-oxo metabolites or by de novo synthesis from cholesterol. The present study investigated the influence of the microbiota on de novo steroidogenesis and regeneration of corticosterone in the intestine of germ-free (GF) and specific pathogen-free mice challenged with a physical stressor (anti-CD3 antibody i.p. injection). In the small intestine, acute immune stress resulted in increased mRNA levels of the proinflammatory cytokines IL1ß, IL6 and Tnfα and genes involved in de novo steroidogenesis (Stard3 and Cyp11a1), as well as in regeneration of active GCs from their 11-oxo metabolites (Hsd11b1). GF mice showed a generally reduced transcriptional response to immune stress, which was accompanied by decreased intestinal corticosterone production and reduced expression of the GC-sensitive marker Fkbp5. In contrast, the interaction between stress and the microbiota was not detected at the level of plasma corticosterone or the transcriptional response of adrenal steroidogenic enzymes. The results indicate a differential immune stress-induced intestinal response to proinflammatory stimuli and local corticosterone production driven by the gut microbiota.


Assuntos
Corticosterona/metabolismo , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Esteroides/metabolismo , Espectrometria de Massas em Tandem
16.
J Immunol ; 206(9): 2109-2121, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858960

RESUMO

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.


Assuntos
Envelhecimento/genética , Antígenos/genética , Memória Imunológica/genética , Linfócitos T/imunologia , Envelhecimento/imunologia , Animais , Antígenos/imunologia , Evolução Clonal , Instabilidade Genômica , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
17.
Sci Rep ; 11(1): 1541, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452341

RESUMO

There remains to this day a great gap in understanding as to the role of B cells and their products-antibodies and cytokines-in mediating the protective response to Francisella tularensis, a Gram-negative coccobacillus belonging to the group of facultative intracellular bacterial pathogens. We previously have demonstrated that Francisella interacts directly with peritoneal B-1a cells. Here, we demonstrate that, as early as 12 h postinfection, germ-free mice infected with Francisella tularensis produce infection-induced antibody clones reacting with Francisella tularensis proteins having orthologs or analogs in eukaryotic cells. Production of some individual clones was limited in time and was influenced by virulence of the Francisella strain used. The phylogenetically stabilized defense mechanism can utilize these early infection-induced antibodies both to recognize components of the invading pathogens and to eliminate molecular residues of infection-damaged self cells.


Assuntos
Linfócitos B/metabolismo , Tularemia/imunologia , Animais , Formação de Anticorpos , Linfócitos B/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Francisella tularensis/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Tularemia/microbiologia , Virulência
18.
Cells ; 9(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339337

RESUMO

Diet is a strong modifier of microbiome and mucosal microenvironment in the gut. Recently, components of western-type diets have been associated with metabolic and immune diseases. Here, we studied how high-sugar diet (HSD) consumption influences gut mucosal barrier and immune response under steady state conditions and in a mouse model of acute colitis. We found that HSD significantly increased gut permeability, spleen weight, and neutrophil levels in spleens of healthy mice. Subsequent dextran sodium sulfate administration led to severe colitis. In colon, HSD significantly promoted neutrophil infiltration and increased the levels of IL-6, IL-1ß, and TNF-α. Moreover, HSD-fed mice had significantly higher abundance of pathobionts, such as Escherichia coli and Candida, in fecal samples. Although germ-free mice colonized with microbiota of conventionally reared mice that consumed different diets had equally severe colitis, mice colonized with HSD microbiota showed markedly increased infiltration of neutrophils to the gut. The induction of colitis in Toll-like receptor 4 (TLR4)-deficient HSD-fed mice led to significantly milder colitis than in wild-type mice. In conclusion, our results suggested a significant role of HSD in disruption of barrier integrity and balanced mucosal and systemic immune response. In addition, these processes seemed to be highly influenced by resident potentially pathogenic microbiota or metabolites via the TLR4 signaling pathway.


Assuntos
Dieta , Microbioma Gastrointestinal , Inflamação/microbiologia , Inflamação/patologia , Monossacarídeos/efeitos adversos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Doença Crônica , Colite/genética , Colite/imunologia , Colite/patologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Sulfato de Dextrana , Fezes , Feminino , Regulação da Expressão Gênica , Imunidade nas Mucosas , Intestinos/patologia , Camundongos Endogâmicos BALB C , Permeabilidade , Índice de Gravidade de Doença , Linfócitos T/imunologia
19.
Front Pharmacol ; 11: 01303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123003

RESUMO

Sexual differences and the composition/function of the gut microbiome are not considered the most important players in the drug metabolism field; however, from the recent data it is obvious that they may significantly affect the response of the patient to therapy. Here, we evaluated the effect of microbial colonization and sex differences on mRNA expression and the enzymatic activity of hepatic cytochromes P450 (CYPs) in germ-free (GF) mice, lacking the intestinal flora, and control specific-pathogen-free (SPF) mice. We observed a significant increase in the expression of Cyp3a11 in female SPF mice compared to the male group. However, the sex differences were erased in GF mice, and the expression of Cyp3a11 was about the same in both sexes. We have also found higher Cyp2c38 gene expression in female mice compared to male mice in both the SPF and GF groups. Moreover, these changes were confirmed at the level of enzymatic activity, where the female mice exhibit higher levels of functional CYP2C than males in both groups. Interestingly, we observed the same trend as with CYP3A enzymes: a diminished difference between the sexes in GF mice. The presented data indicate that the mouse gut microbiome plays an important role in sustaining sexual dimorphism in terms of hepatic gene expression and metabolism.

20.
Sci Rep ; 10(1): 8529, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444678

RESUMO

The gut microbiota is involved in a number of different metabolic processes of the host organism, including the metabolism of xenobiotics. In our study, we focused on liver cytochromes P450 (CYPs), which can metabolize a wide range of exo- and endogenous molecules. We studied changes in mRNA expression and CYP enzyme activities, as well as the mRNA expression of transcription factors that have an important role in CYP expression, all in stressed germ-free (GF) and stressed specific-pathogen-free (SPF) mice. Besides the presence of the gut microbiota, we looked at the difference between acute and chronic stress. Our results show that stress has an impact on CYP mRNA expression, but it is mainly chronic stress that has a significant effect on enzyme activities along with the gut microbiome. In acutely stressed mice, we observed significant changes at the mRNA level, however, the corresponding enzyme activities were not influenced. Our study suggests an important role of the gut microbiota along with chronic psychosocial stress in the expression and activity of CYPs, which can potentially lead to less effective drug metabolism and, as a result, a harmful impact on the organism.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microbioma Gastrointestinal/fisiologia , Fígado/enzimologia , RNA Mensageiro/metabolismo , Estresse Psicológico , Xenobióticos/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Fígado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...