Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38737567

RESUMO

Reproduction, although absolutely essential to a species' persistence, is in itself challenging. As anthropogenic change increasingly affects every landscape on Earth, it is critical to understand how specific pressures impact the reproductive efforts of individuals, which directly contribute to the success or failure of populations. However, organisms rarely encounter a single burden at a time, and the interactions of environmental challenges can have compounding effects. Understanding environmental and physiological pressures is difficult because they are often context-dependent and not generalizable, but long-term monitoring across variable landscapes and weather patterns can improve our understanding of these complex interactions. We tested the effects of urbanization, climate, and individual condition on the reproductive investment of wild side-blotched lizards (Uta stansburiana) by measuring physiological/reproductive metrics from six populations in urban and rural areas over six consecutive years of variable precipitation. We observed that reproductive stage affected body condition, corticosterone concentration, and oxidative stress. We also observed that reproductive patterns differed between urban and rural populations depending on rainfall, with rural animals increasing reproductive investment during rainier years compared to urban conspecifics, and that reproductive decisions appeared to occur early in the reproductive process. These results demonstrate the plastic nature of a generalist species optimizing lifetime fitness under varying conditions.

2.
Gen Comp Endocrinol ; 337: 114258, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870544

RESUMO

Urbanization can cause innumerable abiotic and biotic changes that have the potential to influence the ecology, behavior, and physiology of native resident organisms. Relative to their rural conspecifics, urban Side-blotched Lizard (Uta stansburiana) populations in southern Utah have lower survival prospects and maximize reproductive investment via producing larger eggs and larger clutch sizes. While egg size is an important predictor of offspring quality, physiological factors within the egg yolk are reflective of the maternal environment and can alter offspring traits, especially during energetically costly processes, such as reproduction or immunity. Therefore, maternal effects may represent an adaptive mechanism by which urban-dwelling species can persist within a variable landscape. In this study, we assess urban and rural differences in egg yolk bacterial killing ability (BKA), corticosterone (CORT), oxidative status (d-ROMs), and energy metabolites (free glycerol and triglycerides), and their association with female immune status and egg quality. Within a laboratory setting, we immune challenged urban lizards via lipopolysaccharide injection (LPS) to test whether physiological changes associated with immune system activity impacted egg yolk investment. We found urban females had higher mite loads than rural females, however mite burden was related to yolk BKA in rural eggs, but not urban eggs. While yolk BKA differed between urban and rural sites, egg mass and egg viability (fertilized vs. unfertilized) were strong predictors of yolk physiology and may imply tradeoffs exist between maintenance and reproduction. LPS treatment caused a decrease in egg yolk d-ROMs relative to the control treatments, supporting results from previous research. Finally, urban lizards laid a higher proportion of unfertilized eggs, which differed in egg yolk BKA, CORT, and triglycerides in comparison to fertilized eggs. Because rural lizards laid only viable eggs during this study, these results suggest that reduced egg viability is a potential cost of living in an urban environment. Furthermore, these results help us better understand potential downstream impacts of urbanization on offspring survival, fitness, and overall population health.


Assuntos
Gema de Ovo , Lagartos , Animais , Feminino , Gema de Ovo/metabolismo , Lagartos/metabolismo , Lipopolissacarídeos , Reprodução/fisiologia , Zigoto
3.
J Exp Biol ; 225(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448902

RESUMO

There is great interspecific variation in the nutritional composition of natural diets, and the varied nutritional content is physiologically tolerated because of evolutionarily based balances between diet composition and processing ability. However, as a result of landscape change and human exposure, unnatural diets are becoming widespread among wildlife without the necessary time for evolutionary matching between the diet and its processing. We tested how a controlled, unnatural high glucose diet affects glucose tolerance using captive green iguanas, and we performed similar glucose tolerance tests on wild Northern Bahamian rock iguanas that are either frequently fed grapes by tourists or experience no such supplementation. We evaluated both short and longer-term blood glucose responses and corticosterone (CORT) concentrations as changes have been associated with altered diets. Experimental glucose supplementation in the laboratory and tourist feeding in the wild both significantly affected glucose metabolism. When iguanas received a glucose-rich diet, we found greater acute increases in blood glucose following a glucose challenge. Relative to unfed iguanas, tourist-fed iguanas had significantly lower baseline CORT, higher baseline blood glucose, and slower returns to baseline glucose levels following a glucose challenge. Therefore, unnatural consumption of high amounts of glucose alters glucose metabolism in laboratory iguanas with short-term glucose treatment and free-living iguanas exposed to long-term feeding by tourists. Based on these results and the increasing prevalence of anthropogenically altered wildlife diets, the consequences of dietary changes on glucose metabolism should be further investigated across species, as such changes in glucose metabolism have health consequences in humans (e.g. diabetes).


Assuntos
Iguanas , Animais , Animais Selvagens , Glicemia , Dieta/veterinária , Humanos
4.
J Exp Biol ; 224(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402514

RESUMO

Reptiles, like other vertebrates, rely on immunity to defend themselves from infection. The energetic cost of an immune response is liable to scale with infection severity, prompting constraints on other self-maintenance traits if immune prioritization exceeds energy budget. In this study, adult male side-blotched lizards (Uta stansburiana) were injected with saline (control) or high (20 µg g-1 body mass) or low (10 µg g-1 body mass) concentrations of lipopolysaccharide (LPS) to simulate bacterial infections of discrete severities. The costs and consequences of the immune response were assessed through comparisons of change in resting metabolic rate (RMR), energy metabolites (glucose, glycerol, triglycerides), innate immunity (bactericidal ability), sprint speed and oxidative status (antioxidant capacity, reactive oxygen metabolites). High-LPS lizards had the lowest glucose levels and greatest sprint reductions, while their RMR and bactericidal ability were similar to those of control lizards. Low-LPS lizards had elevated RMR and bactericidal ability, but glucose levels and sprint speed changes between those of high-LPS and control lizards. Levels of glycerol, triglycerides, reactive oxygen metabolites and antioxidant capacity did not differ by treatment. Taken together, energy expenditure for the immune response varies in a non-linear fashion with challenge severity, posing consequences for performance and self-maintenance processes in a reptile.


Assuntos
Lagartos , Animais , Metabolismo Basal , Metabolismo Energético , Imunidade Inata , Masculino , Estresse Oxidativo
5.
Evol Appl ; 14(5): 1248-1262, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025765

RESUMO

Insecticides can exert strong selection on insect pest species, including those that vector diseases, and have led to rapid evolution of resistance. Despite such rapid evolution, relatively little is known about standing genetic variation for resistance in insecticide-susceptible populations of many species. To help fill this knowledge gap, we generated genotyping-by-sequencing data from insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis sand flies that survived or died from a sub-diagnostic exposure to either permethrin or malathion using a modified version of the Centers for Disease Control and Prevention bottle bioassay. Multi-locus genome-wide association mapping methods were used to quantify standing genetic variation for insecticide resistance in these populations and to identify specific alleles associated with insecticide survival. For each insecticide treatment, we estimated the proportion of the variation in survival explained by the genetic data (i.e., "chip" heritability) and the number and contribution of individual loci with measurable effects. For all treatments, survival to an insecticide exposure was heritable with a polygenic architecture. Both P. papatasi and L. longipalpis had alleles for survival that resided within many genes throughout their genomes. The implications for resistance conferred by many alleles, as well as inferences made about the utility of laboratory insecticide resistance association studies compared to field observations, are discussed.

6.
J Comp Physiol B ; 191(3): 531-543, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582858

RESUMO

Wounding events (predation attempts, competitive combat) result in injuries and/or infections that induce integrated immune responses for the recovery process. Despite the survival benefits of immunity in this context, the costs incurred may require investment to be diverted from traits contributing to immediate and/or future survival, such as locomotor performance and oxidative status. Yet, whether trait constraints manifest likely depends on wound severity and the implications for energy budget. For this study, food intake, body mass, sprint speed, and oxidative indices (reactive oxygen metabolites, antioxidant capacity) were monitored in male side-blotched lizards (Uta stansburiana) healing from cutaneous wounds of discrete sizes (control, small, large). Results indicate that larger wounds induced faster healing, reduced food consumption, and led to greater oxidative stress over time. Granted wounding did not differentially affect body mass or sprint speed overall, small-wounded lizards with greater wound area healed had faster sprint speeds while large-wounded lizards with greater wound area healed had slower sprint speeds. During recovery from either wound severity, however, healing and sprint performance did not correspond with food consumption, body mass loss, nor oxidative status. These findings provide support that energy budget, locomotor performance, and oxidative status of a reptile are linked to wound recovery to an extent, albeit dependent on wound severity.


Assuntos
Lagartos , Animais , Antioxidantes , Masculino , Estresse Oxidativo , Comportamento Predatório , Cicatrização
7.
Conserv Physiol ; 8(1): coaa107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365130

RESUMO

Management of stressors requires an understanding of how multiple stressors interact, how different species respond to those interactions and the underlying mechanisms driving observed patterns in species' responses. Salinization and rising temperatures are two pertinent stressors predicted to intensify in freshwater ecosystems, posing concern for how susceptible organisms achieve and maintain homeostasis (i.e. allostasis). Here, glucocorticoid hormones (e.g. cortisol), responsible for mobilizing energy (e.g. glucose) to relevant physiological processes for the duration of stressors, are liable to vary in response to the duration and severity of salinization and temperature rises. With field and laboratory studies, we evaluated how both salinity and temperature influence basal and stress-reactive cortisol and glucose levels in age 1+ mottled sculpin (Cottus bairdii), mountain sucker (Catostomus platyrhynchus) and Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus). We found that temperature generally had the greatest effect on cortisol and glucose concentrations and the effect of salinity was often temperature dependent. We also found that when individuals were chronically exposed to higher salinities, baseline concentrations of cortisol and glucose usually declined as salinity increased. Reductions in baseline concentrations facilitated stronger stress reactivity for cortisol and glucose when exposed to additional stressors, which weakened as temperatures increased. Controlled temperatures near the species' thermal maxima became the overriding factor regulating fish physiology, resulting in inhibitory responses. With projected increases in freshwater salinization and temperatures, efforts to reduce the negative effects of increasing temperatures (i.e. increased refuge habitats and riparian cover) could moderate the inhibitory effects of temperature-dependent effects of salinization for freshwater fishes.

8.
J Exp Zool A Ecol Integr Physiol ; 333(10): 732-743, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959993

RESUMO

Reptiles rely on thermal heat exchange to achieve body temperatures (Tbody ) conducive to maintaining homeostasis. Diurnal changes in the thermal environment are therefore liable to influence allostatic mediation of survival processes (e.g., immunity) during environmental challenges or stressors. However, the extent to which Tbody prompts individual variation in physiology remains largely unexplored in reptiles. Our study tested how circulating energy-mobilizing hormone, energy metabolites, and immunity can vary across basal and stress-induced allostatic states for plateau side-blotched lizards (Uta stansburiana uniformis) residing in a heterogeneous thermal environment. We collected baseline and acute stress blood samples from male lizards to compare changes in plasma corticosterone (CORT), glucose, and bacterial killing ability (BKA) in relation to each other and Tbody . We hypothesized each physiological parameter differs between allostatic states, whereby stress-induced activity increases from baseline. At basal and stress-induced states, we also hypothesized circulating CORT, glucose, and BKA directly correspond with each other and Tbody . We found both CORT and BKA increased while glucose instead decreased from acute stress. At basal and stress-induced allostatic states, we found CORT to be directly related to Tbody while BKA was inversely related to CORT. We also found BKA and glucose were directly related at baseline, but inversely related following acute stress. Overall, these results demonstrate allostatic outcomes from acute stress in a free-living reptile and the role of temperature in mediating energetic state and immunity. Future research on reptilian allostasis should consider multiple environmental conditions and their implications for physiological performance and survival.


Assuntos
Metabolismo Energético/fisiologia , Glucocorticoides/metabolismo , Lagartos/imunologia , Animais , Atividade Bactericida do Sangue , Glicemia/análise , Temperatura Corporal/fisiologia , Corticosterona/sangue , Meio Ambiente , Lagartos/metabolismo , Lagartos/fisiologia , Masculino , Estresse Fisiológico/imunologia , Estresse Fisiológico/fisiologia , Temperatura
9.
Conserv Physiol ; 8(1): coaa001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082575

RESUMO

Spatial and temporal variation in stoichiometric and stable isotope ratios of animals contains ecological information that we are just beginning to understand. In both field and lab studies, stoichiometric or isotopic ratios are related to physiological mechanisms underlying nutrition or stress. Conservation and ecosystem ecology may be informed by isotopic data that can be rapidly and non-lethally collected from wild animals, especially where human activity leaves an isotopic signature (e.g. via introduction of chemical fertilizers, ornamental or other non-native plants or organic detritus). We examined spatial and temporal variation in stoichiometric and stable isotope ratios of the toes of Uta stansburiana (side-blotched lizards) living in urban and rural areas in and around St. George, Utah. We found substantial spatial and temporal variation as well as context-dependent co-variation with reproductive physiological parameters, although certain key predictions such as the relationship between δ15N and body condition were not supported. We suggest that landscape change through urbanization can have profound effects on wild animal physiology and that stoichiometric and stable isotope ratios can provide unique insights into the mechanisms underlying these processes.

10.
J Exp Zool A Ecol Integr Physiol ; 333(10): 744-755, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450143

RESUMO

While there is huge promise in monitoring physiological parameters in free-living organisms, we also find high amounts of variability over time and space. This variation requires us to capitalize on long-term physiological monitoring to adequately address questions of population health, conservation status, or evolutionary trends as long-term sampling can examine ecoimmunological and endocrine interactions in wild populations while accounting for the variation that often makes ecophysiological field studies difficult to compare. In this study, we tested how immune efficacy and endocrinology interact while accounting for ecological context and environmental conditions in two snake species. Specifically, we measured bacterial killing ability, steroid hormones, and morphological characteristics in multiple populations of the Western Terrestrial Gartersnake (Thamnophis elegans) and Common Gartersnake (T. sirtalis) for multiple seasons over 6 years. Leveraging this long-term dataset, we tested how a broad immune measure and endocrine endpoints interact while accounting for individual traits, sampling date, and environmental conditions. Across both species, we found bacterial killing ability to be directly related to corticosterone (CORT) and temperature and greater overall in the spring compared to the fall. We found CORT and testosterone yielded relationships with individual sex, sampling temperature, and time of year. Wild populations can exhibit high amounts of variation in commonly collected physiological endpoints, highlighting the complexity and difficulty inherent in interpreting single endpoints without taking ecological and environmental conditions into account. Our study emphasizes the importance of reporting the environmental conditions under which the sampling occurred to allow for better contextualization and comparison between studies.


Assuntos
Colubridae/fisiologia , Animais , Atividade Bactericida do Sangue , Temperatura Corporal , Colubridae/sangue , Colubridae/imunologia , Corticosterona/sangue , Meio Ambiente , Feminino , Masculino , Estações do Ano , Fatores Sexuais , Testosterona/sangue
11.
J Exp Biol ; 223(Pt 2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31767736

RESUMO

The glucocorticoid hormone corticosterone (CORT) has classically been used in ecophysiological studies as a proxy for stress and energy mobilization, but rarely are CORT and the energy metabolites themselves concurrently measured. To examine CORT's role in mobilizing glucose in a wild reptile, we conducted two studies. The first study measured natural baseline and stress-induced blood-borne CORT and glucose levels in snakes during spring emergence and again when snakes return to the denning sites in autumn. The second study manipulated the hypothalamic-pituitary-adrenal (HPA) axis in male snakes in the autumn by taking a baseline blood sample, then subjecting individuals to one of five treatments (no injection, saline, CORT, adrenocorticotropin hormone and metyrapone). Subsequent samples were taken at 30 and 60 min. In both studies, we found that glucose levels do increase with acute stress, but that the relationship was not directly related to CORT elevation. In the second study, we found that none of the HPA axis manipulations directly affected blood glucose levels, further indicating that CORT may play a complex but not direct role in glucose mobilization in snakes. This study highlights the need for testing mechanisms in wild organisms by combining in situ observations with manipulative studies.


Assuntos
Glicemia/metabolismo , Colubridae/metabolismo , Corticosterona/sangue , Animais , Colubridae/sangue , Masculino , Utah
12.
Integr Comp Biol ; 58(5): 948-966, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873730

RESUMO

The majority of the world population is now inhabiting urban areas, and with staggering population growth, urbanization is also increasing. While the work studying the effects of changing landscapes and specific urban pressures on wildlife is beginning to amass, the majority of this work focuses on avian or mammalian species. However, the effects of urbanization likely vary substantially across taxonomic groups due to differences in habitat requirements and life history. The current article aims first to broaden the review of urban effects across reptilian species; second, to summarize the responses of reptilian fauna to specific urban features; and third, to assess the directionality of individual and population level responses to urbanization in reptile species. Based on our findings, urban research in reptilian taxa is lacking in the following areas: (1) investigating interactive or additive urban factors, (2) measuring multiple morphological, behavioral, and physiological endpoints within an animal, (3) linking individual to population-level responses, and (4) testing genetic/genomic differences across an urban environment as evidence for selective pressures.


Assuntos
Ecossistema , Répteis , Animais , Pesquisa , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...