Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2220334120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155893

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Ratos , Animais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Antagomirs , Zinco/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Inflamação/complicações , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Ligação a RNA/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409089

RESUMO

Wwox-deficient human cells show elevated homologous recombination, leading to resistance to killing by double-strand break-inducing agents. Human Wwox binds to the Brca1 981-PPLF-984 Wwox-binding motif, likely blocking the pChk2 phosphorylation site at Brca1-S988. This phosphorylation site is conserved across mammalian species; the PPLF motif is conserved in primates but not in rodents. We now show that murine Wwox does not bind Brca1 near the conserved mouse Brca1 phospho-S971 site, leaving it open for Chk2 phosphorylation and Brca1 activation. Instead, murine Wwox binds to Brca1 through its BRCT domain, where pAbraxas, pBrip1, and pCtIP, of the A, B, and C binding complexes, interact to regulate double-strand break repair pathway response. In Wwox-deficient mouse cells, the Brca1-BRCT domain is thus accessible for immediate binding of these phospho-proteins. We confirm elevated homologous recombination in Wwox-silenced murine cells, as in human cells. Wwox-deficient murine cells showed increased ionizing radiation-induced Abraxas, Brca1, and CtIP foci and long resected single-strand DNA, early after ionizing radiation. Wwox deletion increased the basal level of Brca1-CtIP interaction and the expression level of the MRN-CtIP protein complex, key players in end-resection, and facilitated Brca1 release from foci. Inhibition of phospho-Chk2 phosphorylation of Brca1-S971 delays the end-resection; the delay of premature end-resection by combining Chk2 inhibition with ionizing radiation or carboplatin treatment restored ionizing radiation and platinum sensitivity in Wwox-deficient murine cells, as in human cells, supporting the use of murine in vitro and in vivo models in preclinical cancer treatment research.


Assuntos
Proteína BRCA1 , Quebras de DNA de Cadeia Dupla , Oxidorredutase com Domínios WW/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA , DNA Helicases/metabolismo , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Recombinação Homóloga , Mamíferos/metabolismo , Camundongos
3.
DNA Repair (Amst) ; 110: 103264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998176

RESUMO

Down regulation of Wwox protein expression occurs in many cancers, contributing to insensitivity to ionizing radiation (IR) and platinum drug treatments. Patients with reduced Wwox expression in their cancer tissue show decreased overall survival following these treatments, in accord with our earlier finding that reduced Wwox protein expression in cancers is associated with changes in choice of DNA double-strand break (DSB) repair pathway. Our current investigation of mechanisms underlying the initial choice of repair by homologous recombination/single-strand annealing (HR/SSA) in Wwox-deficient cells, showed immediate DNA end-resection at DSBs following IR, abrogating initial repair by the expected non-homologous end-joining (NHEJ) pathway. Mechanisms supporting the expected choice of DSB repair by NHEJ in Wwox-sufficient cells are: 1) direct recruitment of Wwox protein binding to Brca1 through the Brca1 981PPLF984 Wwox-binding motif; 2) possible Wwox blocking of Brca1-Rad50 interaction and of Brca1 activation by Chk2 phosphorylation of Brca1 S988; 3) Wwox suppression of Brca1 interaction with the B and C complex proteins, Brip1 and CtIP, thereby delaying the process of DSB end-resection post-IR. Wwox deficiency, instead, leads to early formation of the Brca1-CtIP/MRN complex at induced DSBs, stimulating immediate post-IR end-resection. This premature resection at DNA DSBs leads to inappropriate HR/SSA repair not restricted to late S/G2 cell cycle phases, and increases mutations in genomes of radiation or platinum-resistant colonies. Prevention of premature initiation of end-resection, by combining Chk2 inhibition with IR or carboplatin treatment, successfully sensitized IR and platinum-resistant Wwox-deficient cells by synthetic lethality, but did not alter response of Wwox-sufficient cells. Our results establish Wwox as a biomarker for treatment response and provide potential targets, such as Chk2, for reversal of treatment resistance.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Proteína BRCA1/metabolismo , DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Humanos , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(11): 6075-6085, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123074

RESUMO

MicroRNA-31 (miR-31) is overexpressed in esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary Zn deficiency and inflammation. In a Zn deficiency-promoted rat ESCC model with miR-31 up-regulation, cancer-associated inflammation, and a high ESCC burden following N-nitrosomethylbenzylamine (NMBA) exposure, systemic antimiR-31 delivery reduced ESCC incidence from 85 to 45% (P = 0.038) and miR-31 gene knockout abrogated development of ESCC (P = 1 × 10-6). Transcriptomics, genome sequencing, and metabolomics analyses in these Zn-deficient rats revealed the molecular basis of ESCC abrogation by miR-31 knockout. Our identification of EGLN3, a known negative regulator of nuclear factor κB (NF-κB), as a direct target of miR-31 establishes a functional link between oncomiR-31, tumor suppressor target EGLN3, and up-regulated NF-κB-controlled inflammation signaling. Interaction among oncogenic miR-31, EGLN3 down-regulation, and inflammation was also documented in human ESCCs. miR-31 deletion resulted in suppression of miR-31-associated EGLN3/NF-κB-controlled inflammatory pathways. ESCC-free, Zn-deficient miR-31-/- rat esophagus displayed no genome instability and limited metabolic activity changes vs. the pronounced mutational burden and ESCC-associated metabolic changes of Zn-deficient wild-type rats. These results provide conclusive evidence that miR-31 expression is necessary for ESCC development.


Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , MicroRNAs/metabolismo , Neoplasias Experimentais/genética , Animais , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Suplementos Nutricionais , Neoplasias Esofágicas/induzido quimicamente , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/prevenção & controle , Carcinoma de Células Escamosas do Esôfago/induzido quimicamente , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/prevenção & controle , Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , NF-kappa B/metabolismo , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/patologia , Neoplasias Experimentais/prevenção & controle , Nitrosaminas/toxicidade , Ratos , Ratos Transgênicos , Transdução de Sinais/genética , Zinco/administração & dosagem , Zinco/deficiência
5.
Cell Death Dis ; 10(3): 147, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770797

RESUMO

Fhit protein is lost in cancers of most, perhaps all, cancer types; when restored, it can induce apoptosis and suppress tumorigenicity, as shown in vitro and in mouse tumor models in vivo. Following protein cross-linking and proteomics analyses, we characterized a Fhit protein complex involved in triggering Fhit-mediated apoptosis. The complex includes the heat-shock chaperonin pair, HSP60/10, which is likely involved in importing Fhit into the mitochondria, where it interacts with ferredoxin reductase, responsible for transferring electrons from NADPH to cytochrome P450 via ferredoxin, in electron transport chain complex III. Overexpression of Fhit protein in Fhit-deficient cancer cells modulates the production of intracellular reactive oxygen species, causing increased ROS, following peroxide treatment, with subsequent increased apoptosis of lung cancer cells under oxidative stress conditions; conversely, Fhit-negative cells escape ROS overproduction and ROS-induced apoptosis, likely carrying oxidative damage. Thus, characterization of Fhit-interacting proteins has identified direct effectors of a Fhit-mediated apoptotic signal pathway that is lost in many cancers. This is of translational interest considering the very recent emphasis in a number of high-profile publications, concerning the role of oxidative phosphorylation in the treatment of human cancers, and especially cancer stem cells that rely upon oxidative phosphorylation for survival. Additionally, we have shown that cells from a Fhit-deficient lung cancer cell line, are sensitive to killing by exposure to atovaquone, thought to act as a selective oxidative phosphorylation inhibitor by targeting the CoQ10 dependence of the mitochondrial complex III, while the Fhit-expressing sister clone is resistant to this treatment.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Apoptose/genética , Neoplasias do Colo/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Hidrolases Anidrido Ácido/genética , Atovaquona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Neoplasias Pulmonares/patologia , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/genética , Fosforilação Oxidativa/efeitos dos fármacos , Transfecção
6.
Am J Respir Crit Care Med ; 199(1): 83-98, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107138

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES: We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS: We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS: We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS: This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.


Assuntos
Hidrolases Anidrido Ácido/genética , Hipertensão Pulmonar Primária Familiar/genética , Genes Modificadores/genética , Proteínas de Neoplasias/genética , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar/metabolismo , Feminino , Humanos , Indóis/farmacologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
7.
Genes Chromosomes Cancer ; 58(5): 257-259, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30578698
8.
Proc Natl Acad Sci U S A ; 115(47): E11091-E11100, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397150

RESUMO

Prostate cancer is a leading cause of cancer death in men over 50 years of age, and there is a characteristic marked decrease in Zn content in the malignant prostate cells. The cause and consequences of this loss have thus far been unknown. We found that in middle-aged rats a Zn-deficient diet reduces prostatic Zn levels (P = 0.025), increases cellular proliferation, and induces an inflammatory phenotype with COX-2 overexpression. This hyperplastic/inflammatory prostate has a human prostate cancer-like microRNA profile, with up-regulation of the Zn-homeostasis-regulating miR-183-96-182 cluster (fold change = 1.41-2.38; P = 0.029-0.0003) and down-regulation of the Zn importer ZIP1 (target of miR-182), leading to a reduction of prostatic Zn. This inverse relationship between miR-182 and ZIP1 also occurs in human prostate cancer tissue, which is known for Zn loss. The discovery that the Zn-depleted middle-aged rat prostate has a metabolic phenotype resembling that of human prostate cancer, with a 10-fold down-regulation of citric acid (P = 0.0003), links citrate reduction directly to prostatic Zn loss, providing the underlying mechanism linking dietary Zn deficiency with miR-183-96-182 overexpression, ZIP1 down-regulation, prostatic Zn loss, and the resultant citrate down-regulation, changes mimicking features of human prostate cancer. Thus, dietary Zn deficiency during rat middle age produces changes that mimic those of human prostate carcinoma and may increase the risk for prostate cancer, supporting the need for assessment of Zn supplementation in its prevention.


Assuntos
Adenocarcinoma/patologia , Proteínas de Transporte de Cátions/metabolismo , Próstata/patologia , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Zinco/deficiência , Adenocarcinoma/genética , Animais , Proliferação de Células , Ácido Cítrico/metabolismo , Dieta , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/biossíntese , Hiperplasia Prostática/genética , Neoplasias da Próstata/genética , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/genética , Transcrição Gênica/genética , Células Tumorais Cultivadas , Zinco/metabolismo
9.
BMC Res Notes ; 11(1): 178, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540221

RESUMO

OBJECTIVES: In > 50% of cancers tumor development involves the early loss of Fhit (fragile histidine triad) protein expression, yet the mechanistic pathway(s) by which Fhit mediates its tumor suppressor functions are not fully understood. Earlier attempts to identify a Fhit-deficient gene expression profile relied on total cellular RNA and microarray analysis. The data here used RNA sequencing (RNA-Seq) of Fhit-negative and Fhit-positive cells as proof of principle for the impact of Fhit on specific mRNAs, and to lay the foundation for a study using ribosome profiling to identify mRNAs whose translation is affected by FHIT loss. DATA DESCRIPTION: RNA-Seq was performed on RNA from lines of Fhit-expressing and Fhit-deficient lung cancer cells. This identified changes in the levels of mRNAs for a number of cell survival and cell cycle progression genes. Polysome profile analysis performed on cytoplasmic extracts from Fhit-negative and Fhit-positive cells showed changes in the sedimentation of select mRNAs consistent with changes in translation efficiency. The impact of differential Fhit expression on the turnover of selected cancer-linked mRNAs was determined by RT-qPCR of cytoplasmic RNA isolated at intervals after treating cells with a transcription inhibitor.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Humanos , Análise de Sequência de RNA
10.
Oncotarget ; 8(60): 102199-102211, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254236

RESUMO

The FHIT gene is located at the fragile FRA3B locus where activation by carcinogen-induced and endogenous replication stress causes FHIT deletions even in normal cells over a lifetime. Our lab has shown that loss of FHIT expression causes genome instability and provides single-strand DNA substrates for APOBEC3B hypermutation, in line with evidence that FHIT locus deletions occur in many cancers. Based on these biological features, we hypothesized that FHIT loss drives development of COSMIC mutational signature 5 and here provide evidence, including data mining of >6,500 TCGA samples, that FHIT is the cancer-associated gene with copy number alterations correlating most significantly with signature 5 mutation rate. In addition, tissues of Fhit-deficient mice exhibit a mutational signature strongly resembling signature 5 (cosine similarity value = 0.89). We conclude that FHIT loss is a molecular determinant for signature 5 mutations, which occur in all cancer types early in cancer development, are clock-like, and accelerated by carcinogen exposure. Loss of FHIT caretaker function may be a predictive and preventive marker for cancer development.

11.
Mol Cancer ; 16(1): 179, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282095

RESUMO

BACKGROUND: FHIT is a genome caretaker/tumor suppressor that is silenced in >50% of cancers. Although it was identified more than 20 years ago, questions remain as to how FHIT loss contributes to cancer, and conversely, how FHIT acts to maintain genome integrity and suppress malignancy. Fhit belongs to the histidine triad family of enzymes that catalyze the degradation of nucleoside 5',5'-triphosphates, including the m7GpppN 'caps' that are generated when mRNAs undergo 3'-5' decay. This raised the possibility that Fhit loss might affect changes in the translation of cancer-associated mRNAs, possibly as a consequence of increased intracellular concentrations of these molecules. RESULTS: Ribosome profiling identified several hundred mRNAs for which coding region ribosome occupancy changed as a function of Fhit expression. While many of these changes could be explained by changes in mRNA steady-state, a subset of these showed changes in translation efficiency as a function of Fhit expression. The onset of malignancy has been linked to changes in 5'-UTR ribosome occupancy and this analysis also identified ribosome binding to 5'-untranslated regions (UTRs) of a number of cancer-associated mRNAs. 5'-UTR ribosome occupancy of these mRNAs differed between Fhit-negative and Fhit-positive cells, and in some cases these differences correlated with differences in coding region ribosome occupancy. CONCLUSIONS: In summary, these findings show Fhit expression impacts the translation of a number of cancer associated genes, and they support the hypothesis that Fhit's genome protective/tumor suppressor function is associated with post-transcriptional changes in expression of genes whose dysregulation contributes to malignancy.


Assuntos
Hidrolases Anidrido Ácido/genética , Proteínas de Neoplasias/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Humanos , Mutação , RNA Mensageiro/metabolismo , Transcriptoma
13.
Proc Natl Acad Sci U S A ; 114(16): E3233-E3242, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373563

RESUMO

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.


Assuntos
Aminoidrolases/metabolismo , Glutationa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Aminoidrolases/fisiologia , Animais , Desaminação , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Especificidade por Substrato
14.
Virchows Arch ; 470(6): 647-653, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28289900

RESUMO

Aberrant Fhit expression characterizes a large proportion of primary pancreatic ductal adenocarcinomas (PDACs), but fragmentary information is available on Fhit expression during the phenotypic changes of pancreatic ductal epithelium during multistep transformation. We assessed Fhit expression by immunohistochemistry in two different multistep pancreatic carcinogenic processes: pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasia (IPMN). We considered 105 surgically treated PDACs/IPMNs and selected 30 samples of non-neoplastic pancreatic parenchyma, 50 PanIN lesions, 30 IPMNs, 15 IPMNs with associated invasive carcinoma, and 60 adenocarcinomas. Normal pancreatic ducts and surrounding acinar cells consistently showed moderate to strong Fhit immunoreactivity. Significant down-regulation of Fhit expression was observed in association with increasing severity of dysplastia/neoplastia in both carcinogenic processes. This was further confirmed by studying multiple lesions obtained from the same surgical specimen. Of 60 PDACs, only 14 showed Fhit expression comparable to normal pancreatic ductal epithelium, while the remainder (77%) showed clearly negative or reduced Fhit expression. This study demonstrates that Fhit down-regulation is an early event in both multistep carcinogenic processes leading to PDAC.


Assuntos
Hidrolases Anidrido Ácido/biossíntese , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/metabolismo , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas/patologia , Adulto , Idoso , Carcinoma Ductal Pancreático/metabolismo , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Estudos Retrospectivos , Neoplasias Pancreáticas
15.
Biochim Biophys Acta Gene Regul Mech ; 1860(3): 374-382, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28093273

RESUMO

FHIT is a genome caretaker gene that is silenced in >50% of cancers. Loss of Fhit protein expression promotes accumulation of DNA damage, affects apoptosis and epithelial-mesenchymal transition, though molecular mechanisms underlying these alterations have not been fully elucidated. Initiation of genome instability directly follows Fhit loss and the associated reduced Thymidine Kinase 1 (TK1) protein expression. The effects on TK1 of Fhit knockdown and Fhit induction in the current study confirmed the role of Fhit in regulating TK1 expression. Changes in Fhit expression did not impact TK1 protein turnover or transcription from the TK1 promoter, nor steady-state levels of TK1 mRNA or turnover. Polysome profile analysis showed that up-regulated Fhit expression resulted in decreased TK1 RNA in non-translating messenger ribonucleoproteins and increased ribosome density on TK1 mRNA. Fhit does not bind RNA but its expression increased luciferase expression from a transgene bearing the TK1 5'-UTR. Fhit has been reported to act as a scavenger decapping enzyme, and a similar result with a mutant (H96) that binds but does not cleave nucleoside 5',5'-triphosphates suggests the impact on TK1 translation is due to its ability to modulate the intracellular level of cap-like molecules. Consistent with this, cells expressing Fhit mutants with reduced activity toward cap-like dinucleotides exhibit DNA damage resulting from TK1 deficiency, whereas cells expressing wild-type Fhit or the H96N mutant do not. The results have implications for the mechanism by which Fhit regulates TK1 mRNA, and more broadly, for its modulation of multiple functions as tumor suppressor/genome caretaker.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/fisiologia , Timidina Quinase/biossíntese , Hidrolases Anidrido Ácido/genética , Substituição de Aminoácidos , Linhagem Celular Tumoral , Humanos , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Timidina Quinase/genética
16.
Adv Biol Regul ; 63: 167-176, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27773744

RESUMO

Expression of Fhit and Wwox protein is frequently lost or reduced in many human cancers. In this report, we provide data that further characterizes the molecular consequences of Fhit loss in the initiation of DNA double-strand breaks (DSBs), and of Wwox loss in altered repair of DSBs. We show that loss of Fhit initiates mild genome instability in early passage mouse kidney cells, confirming that DNA damage associated with Fhit-deficiency is not limited to cancer cells. We also demonstrate that the cause of Fhit-deficient DSBs: thymidine deficiency-induced replication stress, can be resolved with thymidine supplementation in early passage mouse kidney cells before extensive genome instability occurs. As for consequences of Wwox loss in cancer, we show in a small panel of breast cancer cells and mouse embryonic fibroblasts that Wwox expression predicts response to radiation and mitomycin C, all agents that cause DSBs. In addition, loss of Wwox significantly reduced progression free survival in a cohort of ovarian cancer patients treated with platin-based chemotherapies. Finally, stratification of a cohort of squamous lung cancers by Fhit expression reveals that Wwox expression is significantly reduced in the low Fhit-expressing group, suggesting that loss of Fhit is quickly succeeded by loss of Wwox. We propose that Fhit and Wwox loss work synergistically in cancer progression and that DNA damage caused by Fhit could be targeted early in cancer initiation for prevention, while DNA damage caused by Wwox loss could be targeted later in cancer progression, particularly in cancers that develop resistance to genotoxic therapies.


Assuntos
Hidrolases Anidrido Ácido/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética , Hidrolases Anidrido Ácido/deficiência , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Proteínas de Neoplasias/deficiência , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Transdução de Sinais , Análise de Sobrevida , Proteínas Supressoras de Tumor/deficiência , Oxidorredutase com Domínios WW/deficiência
17.
Cancer Sci ; 107(11): 1590-1598, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27513973

RESUMO

The FHIT gene, encompassing an active common fragile site, FRA3B, is frequently silenced in preneoplasia and cancer, through gene rearrangement or methylation of regulatory sequences. Silencing of Fhit protein expression causes thymidine kinase 1 downregulation, resulting in dNTP imbalance, and spontaneous replication stress that leads to chromosomal aberrations, allele copy number variations, insertions/deletions, and single-base substitutions. Thus, Fhit, which is reduced in expression in the majority of human cancers, is a genome "caretaker" whose loss initiates genome instability in preneoplastic lesions. To follow the early genetic alterations and functional changes induced by Fhit loss that may recapitulate the neoplastic process in vitro, we established epithelial cell lines from kidney tissues of Fhit-/- and +/+ mouse pups early after weaning, and subjected cell cultures to nutritional and carcinogen stress, which +/+ cells did not survive. Through transcriptome profiling and protein expression analysis, we observed changes in the Trp53/p21 and survivin apoptotic pathways in -/- cells, and in expression of proteins involved in epithelial-mesenchymal transition. Some Fhit-deficient cell lines showed anchorage-independent colony formation and increased invasive capacity in vitro. Furthermore, cells of stressed Fhit-/- cell lines formed s.c. and metastatic tumors in nude mice. Collectively, we show that Fhit loss and subsequent thymidine kinase 1 inactivation, combined with selective pressures, leads to neoplasia-associated alterations in genes and gene expression patterns in vitro and in vivo.


Assuntos
Hidrolases Anidrido Ácido/deficiência , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Proteínas de Neoplasias/deficiência , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Animais , Apoptose/genética , Movimento Celular/genética , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/genética , Timidina Quinase/genética , Fatores de Tempo , Transcrição Gênica
18.
Cancer Med ; 5(8): 2032-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185213

RESUMO

Inadequate dietary Zn consumption increases susceptibility to esophageal and other cancers in humans and model organisms. Since Zn supplementation can prevent cancers in rodent squamous cell carcinoma (SCC) models, we were interested in determining if it could have a preventive effect in a rodent skin cancer model, as a preclinical basis for considering a role for Zn in prevention of human nonmelanoma skin cancers, the most frequent cancers in humans. We used the 7,12-dimethyl benzanthracene carcinogen/phorbol myristate acetate tumor promoter treatment method to induce skin tumors in Zn-sufficient wild-type and Fhit (human or mouse protein) knockout mice. Fhit protein expression is lost in >50% of human cancers, including skin SCCs, and Fhit-deficient mice show increased sensitivity to carcinogen induction of tumors. We hypothesized that: (1) the skin cancer burdens would be reduced by Zn supplementation; (2) Fhit(-/-) (Fhit, murine fragile histidine triad gene) mice would show increased susceptibility to skin tumor induction versus wild-type mice. 30 weeks after initiating treatment, the tumor burden was increased ~2-fold in Fhit(-/-) versus wild-type mice (16.2 versus 7.6 tumors, P < 0.001); Zn supplementation significantly reduced tumor burdens in Fhit(-/-) mice (males and females combined, 16.2 unsupplemented versus 10.3 supplemented, P = 0.001). Most importantly, the SCC burden was reduced after Zn supplementation in both strains and genders of mice, most significantly in the wild-type males (P = 0.035). Although the mechanism(s) of action of Zn supplementation in skin tumor prevention is not known in detail, the Zn-supplemented tumors showed evidence of reduced DNA damage and some cohorts showed reduced inflammation scores. The results suggest that mild Zn supplementation should be tested for prevention of skin cancer in high-risk human cohorts.


Assuntos
Carcinoma de Células Escamosas/patologia , Suplementos Nutricionais , Neoplasias Cutâneas/patologia , Pele/efeitos dos fármacos , Pele/patologia , Zinco/farmacologia , Hidrolases Anidrido Ácido/deficiência , Hidrolases Anidrido Ácido/genética , Animais , Carcinoma de Células Escamosas/etiologia , Dano ao DNA , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Neoplasias Cutâneas/etiologia , Carga Tumoral
19.
Cancer Sci ; 107(4): 528-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26782170

RESUMO

Loss of expression of Fhit, a tumor suppressor and genome caretaker, occurs in preneoplastic lesions during development of many human cancers. Furthermore, Fhit-deficient mouse models are exquisitely susceptible to carcinogen induction of cancers of the lung and forestomach. Due to absence of Fhit genome caretaker function, cultured cells and tissues of the constitutive Fhit knockout strain develop chromosome aneuploidy and allele copy number gains and losses and we hypothesized that Fhit-deficient cells would also develop point mutations. On analysis of whole exome sequences of Fhit-deficient tissues and cultured cells, we found 300 to >1000 single-base substitutions associated with Fhit loss in the 2% of the genome included in exomes, relative to the C57Bl6 reference genome. The mutation signature is characterized by increased C>T and T>C mutations, similar to the "age at diagnosis" signature identified in human cancers. The Fhit-deficiency mutation signature also resembles a C>T and T>C mutation signature reported for human papillary kidney cancers and a similar signature recently reported for esophageal and bladder cancers, cancers that are frequently Fhit deficient. The increase in T>C mutations in -/- exomes may be due to dNTP imbalance, particularly in thymidine triphosphate, resulting from decreased expression of thymidine kinase 1 in Fhit-deficient cells. Fhit-deficient kidney cells that survived in vitro dimethylbenz(a)anthracene treatment additionally showed increased T>A mutations, a signature generated by treatment with this carcinogen, suggesting that these T>A transversions may be evidence of carcinogen-induced preneoplastic changes.


Assuntos
Hidrolases Anidrido Ácido/genética , Neoplasias Renais/genética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Neoplasias Gástricas/genética , Animais , Carcinógenos/toxicidade , Exoma/genética , Regulação Neoplásica da Expressão Gênica , Genoma , Humanos , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Mutação Puntual/genética , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/patologia
20.
Cytogenet Genome Res ; 150(3-4): 208-216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28199992

RESUMO

FHIT, located at FRA3B, is one of the most commonly deleted genes in human cancers, and loss of FHIT protein is one of the earliest events in cancer initiation. However, location of FHIT at a chromosomal fragile site, a locus prone to breakage and gap formation under even mild replication stress, has encouraged claims that FHIT loss is a passenger event in cancers. We summarize accumulated evidence that FHIT protein functions as a genome "caretaker" required to protect the stability of genomes of normal cells of most tissues from agents causing intrinsic and extrinsic DNA damage. FHIT loss leads to intracellular replication stress and subsequent genome instability, which provides an opportunistic mutational landscape in preneoplasias for selection of a variety of other cancer-driving mutations. We also review evidence showing that FHIT loss leads to enhanced activation of other common fragile sites, including the FRA16D/WWOX locus, and creates optimal single-stranded DNA substrates for the hypermutator enzyme, APOBEC3B.


Assuntos
Sítios Frágeis do Cromossomo , Neoplasias/genética , Hidrolases Anidrido Ácido/genética , Genes p53 , Instabilidade Genômica , Humanos , Mutação , Proteínas de Neoplasias/genética , Oxirredutases/genética , Lesões Pré-Cancerosas/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...