Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(23): 231001, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905691

RESUMO

Next-generation radio experiments such as the radio detector of the upgraded Pierre Auger Observatory and the planned GRAND and BEACON arrays target the detection of ultra-high-energy particle air showers arriving at low elevation angles. These inclined cosmic-ray air showers develop higher in the atmosphere than vertical ones, enhancing magnetic deflections of electrons and positrons inside the cascade. We evidence two novel features in their radio emission: a new polarization pattern, consistent with a geosynchrotron emission model and a coherence loss of the radio emission, both for showers with zenith angle θ≳65° and strong enough magnetic field amplitude (typical strength of B∼50 µT). Our model is compared with both ZHAireS and CoREAS Monte Carlo simulations. Our results break the canonical description of a radio signal made of Askaryan and transverse current emission only, and provide guidelines for the detection and reconstruction strategies of next-generation experiments, including cosmic-ray or neutrino discrimination.

2.
Earth Space Sci ; 8(7): e2020EA001523, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435079

RESUMO

Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 µs or 10 µs fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056602, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181531

RESUMO

We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation-the "endpoint formulation"-combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or "endpoints," with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent "bremsstrahlung" from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA