Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 124(5): 2702-5, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19045755

RESUMO

In a paper published in this journal in 2001 by Dong et al. [W. G. Dong, X. Y. Huang, and Q. L. Wo, J. Acoust. Soc. Am. 110, 120-126 (2001)] it was claimed that acoustic chaos was obtained experimentally by the nonlinear interaction of two acoustic waves in a duct. In this comment a simple experimental setup and an analytical model is used to show that the dynamics of such systems corresponds to a quasiperiodic motion, and not to a chaotic one.


Assuntos
Acústica , Som , Percepção Auditiva , Limiar Auditivo , Modelos Teóricos , Dinâmica não Linear
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 2): 056307, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17677164

RESUMO

The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036601, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16605671

RESUMO

Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 2): 016308, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16090087

RESUMO

We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid--pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 2): 046301, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14683038

RESUMO

An experimental study of the dynamic response of a Newtonian fluid and a Maxwellian fluid under an oscillating pressure gradient is presented. Laser Doppler anemometry is used in order to determine the velocity of the fluid inside a cylindrical tube. In the case of the Newtonian fluid, the dissipative nature is observed. In the dynamic response of the Maxwellian fluid an enhancement at the frequencies predicted by theory is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA