Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 12(1): 381, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096987

RESUMO

Stress exposure impairs brain structure and function, resulting in cognitive deficits and increased risk for psychiatric disorders such as depression, schizophrenia, anxiety and post-traumatic stress disorder. In particular, stress exposure affects function and structure of hippocampal CA1 leading to impairments in episodic memory. Here, we applied longitudinal deep-brain optical imaging to investigate the link between changes in activity patterns and structural plasticity of dorsal CA1 pyramidal neurons and hippocampal-dependent learning and memory in mice exposed to stress. We found that several days of repeated stress led to a substantial increase in neuronal activity followed by disruption of the temporal structure of this activity and spatial coding. We then tracked dynamics of structural excitatory connectivity as a potential underlying cause of the changes in activity induced by repeated stress. We thus discovered that exposure to repeated stress leads to an immediate decrease in spinogenesis followed by decrease in spine stability. By comparison, acute stress led to stabilization of the spines born in temporal proximity to the stressful event. Importantly, the temporal relationship between changes in activity levels, structural connectivity and activity patterns, suggests that loss of structural connectivity mediates the transition between increased activity and impairment of temporal organization and spatial information content in dorsal CA1 upon repeated stress exposure.


Assuntos
Hipocampo , Aprendizagem , Animais , Ansiedade/etiologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Camundongos , Neurônios , Células Piramidais
2.
Neuron ; 110(14): 2283-2298.e9, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35649415

RESUMO

A single sub-anesthetic dose of ketamine produces a rapid and sustained antidepressant response, yet the molecular mechanisms responsible for this remain unclear. Here, we identified cell-type-specific transcriptional signatures associated with a sustained ketamine response in mice. Most interestingly, we identified the Kcnq2 gene as an important downstream regulator of ketamine action in glutamatergic neurons of the ventral hippocampus. We validated these findings through a series of complementary molecular, electrophysiological, cellular, pharmacological, behavioral, and functional experiments. We demonstrated that adjunctive treatment with retigabine, a KCNQ activator, augments ketamine's antidepressant-like effects in mice. Intriguingly, these effects are ketamine specific, as they do not modulate a response to classical antidepressants, such as escitalopram. These findings significantly advance our understanding of the mechanisms underlying the sustained antidepressant effects of ketamine, with important clinical implications.


Assuntos
Ketamina , Animais , Antidepressivos/farmacologia , Hipocampo , Canal de Potássio KCNQ2/genética , Ketamina/farmacologia , Ketamina/uso terapêutico , Camundongos , Proteínas do Tecido Nervoso , Neurônios
3.
Mol Psychiatry ; 26(8): 4191-4204, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219358

RESUMO

Major depressive disorder (MDD) is a complex and debilitating illness whose etiology remains unclear. Small RNA molecules, such as micro RNAs (miRNAs) have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified miRNA expression by small RNA sequencing in the anterior cingulate cortex and habenula of individuals with MDD and psychiatrically-healthy controls. Thirty-two miRNAs showed significantly correlated expression between the two regions (False Discovery Rate < 0.05), of which four, miR-204-5p, miR-320b, miR-323a-3p, and miR-331-3p, displayed upregulated expression in MDD. We assessed the expression of predicted target genes of differentially expressed miRNAs in the brain, and found that the expression of erb-b2 receptor tyrosine kinase 4 (ERBB4), a gene encoding a neuregulin receptor, was downregulated in both regions, and was influenced by miR-323a-3p in vitro. Finally, we assessed the effects of manipulating miRNA expression in the mouse ACC on anxiety- and depressive-like behaviors. Mice in which miR-323-3p was overexpressed or knocked-down displayed increased and decreased emotionality, respectively. Additionally, these mice displayed significantly downregulated and upregulated expression of Erbb4, respectively. Overall, our findings indicate the importance of brain miRNAs in the pathology of MDD, and emphasize the involvement of miR-323a-3p and ERBB4 in this phenotype. Future studies further characterizing miR-323a-3p and neuregulin signaling in depression are warranted.


Assuntos
Transtorno Depressivo Maior , MicroRNAs , Receptor ErbB-4 , Animais , Depressão , Transtorno Depressivo Maior/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Receptor ErbB-4/genética , Análise de Sequência de RNA
4.
Development ; 146(20)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31575648

RESUMO

The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Neural Regen Res ; 13(5): 854-861, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29863016

RESUMO

Despite the regenerative capabilities of peripheral nerves, severe injuries or neuronal trauma of critical size impose immense hurdles for proper restoration of neuro-muscular circuitry. Autologous nerve grafts improve re-establishment of connectivity, but also comprise substantial donor site morbidity. We developed a rat model which allows the testing of different cell applications, i.e., mesenchymal stem cells, to improve nerve regeneration in vivo. To mimic inaccurate alignment of autologous nerve grafts with the injured nerve, a 20 mm portion of the sciatic nerve was excised, and sutured back in place in reversed direction. To validate the feasibility of our novel model, a fibrin gel conduit containing autologous undifferentiated adipose-derived stem cells was applied around the coaptation sites and compared to autologous nerve grafts. After evaluating sciatic nerve function for 16 weeks postoperatively, animals were sacrificed, and gastrocnemius muscle weight was determined along with morphological parameters (g-ratio, axon density & diameter) of regenerating axons. Interestingly, the addition of undifferentiated adipose-derived stem cells resulted in a significantly improved re-myelination, axon ingrowth and functional outcome, when compared to animals without a cell seeded conduit. The presented model thus displays several intriguing features: it imitates a certain mismatch in size, distribution and orientation of axons within the nerve coaptation site. The fibrin conduit itself allows for an easy application of cells and, as a true critical-size defect model, any observed improvement relates directly to the performed intervention. Since fibrin and adipose-derived stem cells have been approved for human applications, the technique can theoretically be performed on humans. Thus, we suggest that the model is a powerful tool to investigate cell mediated assistance of peripheral nerve regeneration.

6.
Methods Mol Biol ; 1668: 177-192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28842910

RESUMO

Direct or indirect impairment of breathing in humans by diseases or environmental factors can either cause long-term disability and pain, or can ultimately result in death. Automatic respiratory centers in the brainstem control the highly structured process of breathing and signal to a specialized group of motor neurons in the cervical spinal cord that constitute the phrenic nerves. In mammals, the thoracic diaphragm separates the thorax from the abdomen and adopts the function of the primary respiratory musculature. Faithful innervation by the phrenic nerves is a prerequisite for correct functionality of this highly specialized musculature and thus, ultimately, the viability of the entire organism.To analyze the effects of diseases and genetic defects responsible for deleterious or lethal respiratory phenotypes, accurate imaging of respiratory innervation during embryonic development, e.g., in genetically modified mouse models enables the characterization of specific marker genes and pathways that underlie appropriate wiring of the diaphragm. Among the different available immunostaining techniques, wholemount staining methods provide the advantage of clear and faithful three-dimensional information about the location of the antigens of interest. In comparison to routine histological techniques, however, the researcher has to deal with technical challenges, such as antibody penetration, the stability and availability of the antigen, and clearing of the relevant tissue, and the need to be equipped with state-of-the-art microscope equipment.In this methodological chapter, we explain and share our expertise concerning wholemount processing of mouse embryos and thoracic diaphragms for the analysis of mammalian respiratory innervation.


Assuntos
Diafragma/inervação , Coloração e Rotulagem/métodos , Tórax/inervação , Animais , Fasciculação Axônica , Orientação de Axônios , Moléculas de Adesão Celular/metabolismo , Diafragma/química , Embrião de Mamíferos , Corantes Fluorescentes/química , Camundongos , Neurônios Motores/metabolismo , Desenvolvimento Muscular , Imagem Óptica , Nervo Frênico/crescimento & desenvolvimento , Tórax/química
7.
Methods Mol Biol ; 1493: 443-466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27787870

RESUMO

How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.


Assuntos
Axônios/fisiologia , Desenvolvimento Embrionário , Semaforinas/fisiologia , Animais , Orientação de Axônios , Feminino , Camundongos , Gravidez
8.
J Cell Sci ; 129(17): 3295-308, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466379

RESUMO

Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A-Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A-Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm.


Assuntos
Diafragma/inervação , Diafragma/metabolismo , Desenvolvimento Muscular , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Transdução de Sinais , Animais , Fasciculação Axônica , Diafragma/embriologia , Embrião de Mamíferos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Neurônios Motores/metabolismo , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nervo Frênico/metabolismo , Receptores Imunológicos/metabolismo , Células-Tronco/metabolismo , Tendões/metabolismo , Proteínas Roundabout
9.
Dev Biol ; 413(1): 86-103, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26187199

RESUMO

During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.


Assuntos
Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Tubo Neural/embriologia , Fatores de Transcrição Box Pareados/genética , Sistema Nervoso Periférico/embriologia , Proteínas Repressoras/genética , Alelos , Animais , Axônios/metabolismo , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Padronização Corporal , Linhagem da Célula , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Interneurônios/metabolismo , Camundongos , Neurônios Motores/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/fisiologia , Fenótipo , Estrutura Terciária de Proteína , Proteínas Repressoras/fisiologia , Rombencéfalo/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/genética
10.
PLoS One ; 10(2): e0118505, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710467

RESUMO

Engrailed-1 (En1) is expressed in the ventral ectoderm of the developing limb where it plays an instructive role in the dorsal-ventral patterning of the forelimb. Besides its well-described role as a transcription factor in regulating gene expression through its DNA-binding domain, En1 may also be secreted to form an extracellular gradient, and directly impact on the formation of the retinotectal map. We show here that absence of En1 causes mispatterning of the forelimb and thus defects in the dorsal-ventral pathfinding choice of motor axons in vivo. In addition, En1 but not En2 also has a direct and specific repulsive effect on motor axons of the lateral aspect of the lateral motor column (LMC) but not on medial LMC projections. Moreover, an ectopic dorsal source of En1 pushes lateral LMC axons to the ventral limb in vivo. Thus, En1 controls the establishment of limb innervation through two distinct molecular mechanisms.


Assuntos
Membro Anterior/inervação , Proteínas de Homeodomínio/metabolismo , Animais , Axônios/metabolismo , Embrião de Galinha , Galinhas , Ectoderma/metabolismo , Embrião de Mamíferos/metabolismo , Membro Anterior/metabolismo , Membro Anterior/patologia , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Camundongos , Neurônios Motores/química , Neurônios Motores/metabolismo , Mutação , Receptor EphA4/metabolismo
11.
PLoS One ; 7(12): e50509, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227180

RESUMO

The neuromuscular junctions are the specialized synapses whereby spinal motor neurons control the contraction of skeletal muscles. The formation of the neuromuscular junctions is controlled by a complex interplay of multiple mechanisms coordinately activated in motor nerve terminals and in their target myotubes. However, the transcriptional regulators that control in motor neurons the genetic programs involved in neuromuscular junction development remain unknown. Here, we provide evidence that the Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. Indeed, adult Hnf6 mutant mice exhibit hindlimb muscle weakness and abnormal locomotion. This results from defects of hindlimb neuromuscular junctions characterized by an abnormal morphology and defective localization of the synaptic vesicle protein synaptophysin at the motor nerve terminals. These defects are consequences of altered and delayed formation of the neuromuscular junctions in newborn mutant animals. Furthermore, we show that the expression level of numerous regulators of neuromuscular junction formation, namely agrin, neuregulin-2 and TGF-ß receptor II, is downregulated in the spinal motor neurons of Hnf6 mutant newborn animals. Finally, altered formation of neuromuscular junction-like structures in a co-culture model of wildtype myotubes with mutant embryonic spinal cord slices is rescued by recombinant agrin and neuregulin, indicating that depletion in these factors contributes to defective neuromuscular junction development in the absence of HNF-6. Thus, HNF-6 controls in spinal motor neurons a genetic program that coordinates the formation of hindlimb neuromuscular junctions.


Assuntos
Fator 6 Nuclear de Hepatócito/fisiologia , Neurônios Motores/fisiologia , Junção Neuromuscular/crescimento & desenvolvimento , Animais , Sequência de Bases , Técnicas de Cocultura , Primers do DNA , Imunofluorescência , Hibridização In Situ , Locomoção , Camundongos , Camundongos Mutantes , Microscopia Eletrônica , Reação em Cadeia da Polimerase
12.
PLoS One ; 7(7): e41095, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815929

RESUMO

During development, fibroblast growth factors (FGF) are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremities. In previous studies, FGF receptor 2 (FGFR2) was found to interact with axon bound molecules involved in axon fasciculation and extension, thus rendering this receptor an interesting candidate for the promotion of proper peripheral innervation. However, while the involvement of FGFR2 in limb bud induction has been extensively studied, its role during axon elongation and formation of distinct nervous projections has not been addressed so far. We show here that motor neurons in the spinal cord express FGFR2 and other family members during the establishment of motor connections to the forelimb and axial musculature. Employing a conditional genetic approach to selectively ablate FGFR2 from motor neurons we found that the patterning of motor columns and the expression patterns of other FGF receptors and Sema3A in the motor columns of mutant embryos are not altered. In the absence of FGFR2 signaling, pathfinding of motor axons is intact, and also fasciculation, distal advancement of motor nerves and gross morphology and positioning of axonal projections are not altered. Our findings therefore show that FGFR2 is not required cell-autonomously in motor neurons during the formation of initial motor projections towards limb and axial musculature.


Assuntos
Axônios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Medula Espinal/embriologia , Animais , Fasciculação/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Genótipo , Camundongos , Microscopia de Fluorescência/métodos , Modelos Genéticos , Semaforina-3A/metabolismo , Transdução de Sinais
13.
Dev Biol ; 359(2): 230-41, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21925156

RESUMO

Interaction of the axon guidance receptor Neuropilin-1 (Npn-1) with its repulsive ligand Semaphorin 3A (Sema3A) is crucial for guidance decisions, fasciculation, timing of growth and axon-axon interactions of sensory and motor projections in the embryonic limb. At cranial levels, Npn-1 is expressed in motor neurons and sensory ganglia and loss of Sema3A-Npn-1 signaling leads to defasciculation of the superficial projections to the head and neck. The molecular mechanisms that govern the initial fasciculation and growth of the purely motor projections of the hypoglossal and abducens nerves in general, and the role of Npn-1 during these events in particular are, however, not well understood. We show here that selective removal of Npn-1 from somatic motor neurons impairs initial fasciculation and assembly of hypoglossal rootlets and leads to reduced numbers of abducens and hypoglossal fibers. Ablation of Npn-1 specifically from cranial neural crest and placodally derived sensory tissues recapitulates the distal defasciculation of mixed sensory-motor nerves of trigeminal, facial, glossopharyngeal and vagal projections, which was observed in Npn-1(-/-) and Npn-1(Sema-) mutants. Surprisingly, the assembly and fasciculation of the purely motor hypoglossal nerve are also impaired and the number of Schwann cells migrating along the defasciculated axonal projections is reduced. These findings are corroborated by partial genetic elimination of cranial neural crest and embryonic placodes, where loss of Schwann cell precursors leads to aberrant growth patterns of the hypoglossal nerve. Interestingly, rostral turning of hypoglossal axons is not perturbed in any of the investigated genotypes. Thus, initial hypoglossal nerve assembly and fasciculation, but not later guidance decisions depend on Npn-1 expression and axon-Schwann cell interactions.


Assuntos
Movimento Celular , Nervos Cranianos/metabolismo , Fasciculação/metabolismo , Neuropilina-1/metabolismo , Células de Schwann/metabolismo , Nervo Abducente/embriologia , Nervo Abducente/metabolismo , Animais , Axônios/metabolismo , Nervos Cranianos/embriologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fasciculação/genética , Feminino , Nervo Hipoglosso/embriologia , Nervo Hipoglosso/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Mutação , Crista Neural/embriologia , Crista Neural/metabolismo , Neuropilina-1/genética , Fatores de Transcrição SOXE/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
14.
PLoS Biol ; 9(2): e1001020, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21364975

RESUMO

The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.


Assuntos
Axônios/metabolismo , Extremidades/inervação , Neurônios Motores/metabolismo , Neuropilina-1/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Fasciculação/metabolismo , Fasciculação/patologia , Deleção de Genes , Integrases/metabolismo , Camundongos , Neurônios Motores/patologia , Células Receptoras Sensoriais/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...