Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667419

RESUMO

The polyphagous fall armyworm (FAW), Spodoptera frugiperda, has become an invasive pest worldwide in recent years. To develop maize germplasm with multiple pest resistance and understand genetic inheritance, 12 experimental hybrids (six pairs of reciprocal crosses) with diverse genetic backgrounds and four commercial checks were examined for FAW resistance in 2013 and 2014. The experiment utilized a randomized complete block design with four replications as the block factor. FAW injury on maize plants was assessed at 7 and 14 d after the artificial infestation at the V6 stage, and predatory arthropod taxa and abundance on maize seedlings were recorded 7 d after the infestation. Spodoptera frugiperda resistance varied significantly among the 16 hybrids. Two reciprocal crosses ('FAW1430' × 'Oh43' and 'CML333' × 'NC358') showed the least FAW injury. Eleven arthropod predators [i.e., six coleopterans, three hemipterans, earwigs (dermapterans), and spiders (or arachnids)] were also recorded; the two most common predators were the pink spotted ladybeetle, Coleomegilla maculata, and the insidious flower (or minute pirate) bug, Orius spp. Predator abundance was not correlated to FAW injury but varied greatly between 2013 and 2014. Principal component analysis demonstrated that, when compared with FAW resistant (or Bt-transgenic) checks ('DKC69-71', 'DKC67-88', and 'P31P42'), five pairs of the reciprocal crosses had moderate FAW resistance, whereas a pair of reciprocal crosses ('NC350' × 'NC358' and NC358 × NC350) showed the same FAW susceptibility as the non-Bt susceptible check 'DKC69-72'. Both parents contributed similarly to FAW resistance, or no maternal/cytoplasmic effect was detected in the experimental hybrids.

2.
Mol Plant ; 16(8): 1283-1303, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37434355

RESUMO

13-Lipoxygenases (LOXs) initiate the synthesis of jasmonic acid (JA), the best-understood oxylipin hormone in herbivory defense. However, the roles of 9-LOX-derived oxylipins in insect resistance remain unclear. Here, we report a novel anti-herbivory mechanism mediated by a tonoplast-localized 9-LOX, ZmLOX5, and its linolenic acid-derived product, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA). Transposon-insertional disruption of ZmLOX5 resulted in the loss of resistance to insect herbivory. lox5 knockout mutants displayed greatly reduced wound-induced accumulation of multiple oxylipins and defense metabolites, including benzoxazinoids, abscisic acid (ABA), and JA-isoleucine (JA-Ile). However, exogenous JA-Ile failed to rescue insect defense in lox5 mutants, while applications of 1 µM 9,10-KODA or the JA precursor, 12-oxo-phytodienoic acid (12-OPDA), restored wild-type resistance levels. Metabolite profiling revealed that exogenous 9,10-KODA primed the plants for increased production of ABA and 12-OPDA, but not JA-Ile. While none of the 9-oxylipins were able to rescue JA-Ile induction, the lox5 mutant accumulated lower wound-induced levels of Ca2+, suggesting this as a potential explanation for lower wound-induced JA. Seedlings pretreated with 9,10-KODA exhibited rapid or more robust wound-induced defense gene expression. In addition, an artificial diet supplemented with 9,10-KODA arrested fall armyworm larvae growth. Finally, analysis of single and double lox5 and lox10 mutants showed that ZmLOX5 also contributed to insect defense by modulating ZmLOX10-mediated green leaf volatile signaling. Collectively, our study uncovered a previously unknown anti-herbivore defense and hormone-like signaling activity for a major 9-oxylipin α-ketol.


Assuntos
Oxilipinas , Zea mays , Animais , Oxilipinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Insetos , Ácido Abscísico , Ciclopentanos/metabolismo , Hormônios , Lipoxigenases/genética
3.
New Phytol ; 238(6): 2460-2475, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994603

RESUMO

Little is known about long-distance mesophyll-driven signals that regulate stomatal conductance. Soluble and/or vapor-phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in Arabidopsis thaliana by CO2 /abscisic acid (ABA) was examined. We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene-signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2 ]-shifts. According to our research, higher [CO2 ] causes Arabidopsis rosettes to produce more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2 -induced stomatal movements. Ethylene-insensitive receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, mutants showed intact stomatal responses to [CO2 ]-shifts, whereas loss-of-function ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, showed markedly accelerated stomatal responses to [CO2 ]-shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in the etr2-3;ein4-4;ers2-3 mutants. These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2 and ABA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Estômatos de Plantas/fisiologia
4.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903970

RESUMO

In maize (Zea mays), fungal-elicited immune responses include the accumulation of terpene synthase (TPS) and cytochrome P450 monooxygenases (CYP) enzymes resulting in complex antibiotic arrays of sesquiterpenoids and diterpenoids, including α/ß-selinene derivatives, zealexins, kauralexins and dolabralexins. To uncover additional antibiotic families, we conducted metabolic profiling of elicited stem tissues in mapping populations, which included B73 × M162W recombinant inbred lines and the Goodman diversity panel. Five candidate sesquiterpenoids associated with a chromosome 1 locus spanning the location of ZmTPS27 and ZmTPS8. Heterologous enzyme co-expression studies of ZmTPS27 in Nicotiana benthamiana resulted in geraniol production while ZmTPS8 yielded α-copaene, δ-cadinene and sesquiterpene alcohols consistent with epi-cubebol, cubebol, copan-3-ol and copaborneol matching the association mapping efforts. ZmTPS8 is an established multiproduct α-copaene synthase; however, ZmTPS8-derived sesquiterpene alcohols are rarely encountered in maize tissues. A genome wide association study further linked an unknown sesquiterpene acid to ZmTPS8 and combined ZmTPS8-ZmCYP71Z19 heterologous enzyme co-expression studies yielded the same product. To consider defensive roles for ZmTPS8, in vitro bioassays with cubebol demonstrated significant antifungal activity against both Fusarium graminearum and Aspergillus parasiticus. As a genetically variable biochemical trait, ZmTPS8 contributes to the cocktail of terpenoid antibiotics present following complex interactions between wounding and fungal elicitation.

5.
Curr Biol ; 32(11): R525-R528, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671727

RESUMO

Electrical signaling is a critical initial trigger of systemic plant resistance to herbivory, but channels and pumps involved in signal maintenance are poorly understood. A new study identifies P-type calcium ATPases as necessary for both sustained vascular excitability during prolonged attack and physiological resilience.


Assuntos
Herbivoria , Oxilipinas , Ciclopentanos , Herbivoria/fisiologia , Folhas de Planta/fisiologia , Transdução de Sinais
7.
Planta ; 255(2): 37, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020066

RESUMO

MAIN CONCLUSION: A WRKY transcription factor identified through forward genetics is associated with sorghum resistance to the sugarcane aphid and through heterologous expression reduces aphid populations in multiple plant species. Crop plant resistance to insect pests is based on genetically encoded traits which often display variability across diverse germplasm. In a comparatively recent event, a predominant sugarcane aphid (SCA: Melanaphis sacchari) biotype has become a significant agronomic pest of grain sorghum (Sorghum bicolor). To uncover candidate genes underlying SCA resistance, we used a forward genetics approach combining the genetic diversity present in the Sorghum Association Panel (SAP) and the Bioenergy Association Panel (BAP) for a genome-wide association study, employing an established SCA damage rating. One major association was found on Chromosome 9 within the WRKY transcription factor 86 (SbWRKY86). Transcripts encoding SbWRKY86 were previously identified as upregulated in SCA-resistant germplasm and the syntenic ortholog in maize accumulates following Rhopalosiphum maidis infestation. Analyses of SbWRKY86 transcripts displayed patterns of increased SCA-elicited accumulation in additional SCA-resistant sorghum lines. Heterologous expression of SbWRKY86 in both tobacco (Nicotiana benthamiana) and Arabidopsis resulted in reduced population growth of green peach aphid (Myzus persicae). Comparative RNA-Seq analyses of Arabidopsis lines expressing 35S:SbWRKY86-YFP identified changes in expression for a small network of genes associated with carbon-nitrogen metabolism and callose deposition, both contributing factors to defense against aphids. As a test of altered plant responses, 35S:SbWRKY86-YFP Arabidopsis lines were activated using the flagellin epitope elicitor, flg22, and displayed significant increases in callose deposition. Our findings indicate that both heterologous and increased native expression of the transcription factor SbWRKY86 contributes to reduced aphid levels in diverse plant models.


Assuntos
Afídeos , Sorghum , Animais , Estudo de Associação Genômica Ampla , Sorghum/genética , Fatores de Transcrição/genética
8.
Plant Physiol ; 188(1): 167-190, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718797

RESUMO

Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.


Assuntos
Antifúngicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença/fisiologia , Flavonoides/metabolismo , Fusarium/patogenicidade , Metiltransferases/metabolismo , Zea mays/metabolismo , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Zea mays/microbiologia
9.
Plant J ; 108(5): 1295-1316, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34564909

RESUMO

Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Lepidópteros/fisiologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Zea mays/genética , Animais , Mapeamento Cromossômico , Loci Gênicos/genética , Herbivoria , Peptídeos/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Zea mays/fisiologia
10.
Trends Plant Sci ; 26(10): 1002-1005, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391666

RESUMO

Recent studies suggest that immune-induced alternative splice variants of the Arabidopsis thaliana Ca2+-dependent protein kinase (CDPK) AtCPK28 may result in signal attenuation. We put forward the hypothesis that expression of alternative truncated variants may be a broadly conserved regulatory mechanism of CDPKs throughout the green lineage.


Assuntos
Arabidopsis , Proteínas Quinases , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas Quinases/genética
11.
Curr Opin Biotechnol ; 70: 174-186, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34129999

RESUMO

Roots remain an understudied site of complex and important biological interactions mediating plant productivity. In grain and bioenergy crops, grass root specialized metabolites (GRSM) are central to key interactions, yet our basic knowledge of the chemical language remains fragmentary. Continued improvements in plant genome assembly and metabolomics are enabling large-scale advances in the discovery of specialized metabolic pathways as a means of regulating root-biotic interactions. Metabolomics, transcript coexpression analyses, forward genetic studies, gene synthesis and heterologous expression assays drive efficient pathway discoveries. Functional genetic variants identified through genome wide analyses, targeted CRISPR/Cas9 approaches, and both native and non-native overexpression studies critically inform novel strategies for bioengineering metabolic pathways to improve plant traits.


Assuntos
Produtos Agrícolas , Estudo de Associação Genômica Ampla , Produtos Agrícolas/genética , Grão Comestível , Genoma de Planta/genética , Metabolômica
12.
PeerJ ; 8: e10264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240618

RESUMO

The rapid assignment of genotypes to phenotypes has been a historically challenging process. The discovery of genes encoding biosynthetic pathway enzymes for defined plant specialized metabolites has been informed and accelerated by the detection of gene clusters. Unfortunately, biosynthetic pathway genes are commonly dispersed across chromosomes or reside in genes clusters that provide little predictive value. More reliably, transcript abundance of genes underlying biochemical pathways for plant specialized metabolites display significant coregulation. By rapidly identifying highly coexpressed transcripts, it is possible to efficiently narrow candidate genes encoding pathway enzymes and more easily predict both functions and functional associations. Mutual Rank (MR)-based coexpression analyses in plants accurately demonstrate functional associations for many specialized metabolic pathways; however, despite the clear predictive value of MR analyses, the application is uncommonly used to drive new pathway discoveries. Moreover, many coexpression databases aid in the prediction of both functional associations and gene functions, but lack customizability for refined hypothesis testing. To facilitate and speed flexible MR-based hypothesis testing, we developed MutRank, an R Shiny web-application for coexpression analyses. MutRank provides an intuitive graphical user interface with multiple customizable features that integrates user-provided data and supporting information suitable for personal computers. Tabular and graphical outputs facilitate the rapid analyses of both unbiased and user-defined coexpression results that accelerate gene function predictions. We highlight the recent utility of MR analyses for functional predictions and discoveries in defining two maize terpenoid antibiotic pathways. Beyond applications in biosynthetic pathway discovery, MutRank provides a simple, customizable and user-friendly interface to enable coexpression analyses relating to a breadth of plant biology inquiries. Data and code are available at GitHub: https://github.com/eporetsky/MutRank.

13.
Proc Natl Acad Sci U S A ; 117(49): 31510-31518, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229576

RESUMO

Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.


Assuntos
Herbivoria/fisiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Plantas Geneticamente Modificadas , Spodoptera/fisiologia , Nicotiana/imunologia , Vigna/imunologia
14.
Nat Plants ; 6(11): 1375-1388, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106639

RESUMO

Specialized metabolites constitute key layers of immunity that underlie disease resistance in crops; however, challenges in resolving pathways limit our understanding of the functions and applications of these metabolites. In maize (Zea mays), the inducible accumulation of acidic terpenoids is increasingly considered to be a defence mechanism that contributes to disease resistance. Here, to understand maize antibiotic biosynthesis, we integrated association mapping, pan-genome multi-omic correlations, enzyme structure-function studies and targeted mutagenesis. We define ten genes in three zealexin (Zx) gene clusters that encode four sesquiterpene synthases and six cytochrome P450 proteins that collectively drive the production of diverse antibiotic cocktails. Quadruple mutants in which the ability to produce zealexins (ZXs) is blocked exhibit a broad-spectrum loss of disease resistance. Genetic redundancies ensuring pathway resiliency to single null mutations are combined with enzyme substrate promiscuity, creating a biosynthetic hourglass pathway that uses diverse substrates and in vivo combinatorial chemistry to yield complex antibiotic blends. The elucidated genetic basis of biochemical phenotypes that underlie disease resistance demonstrates a predominant maize defence pathway and informs innovative strategies for transferring chemical immunity between crops.


Assuntos
Antibacterianos/biossíntese , Resistência à Doença/genética , Imunidade Inata/genética , Redes e Vias Metabólicas/genética , Zea mays/genética , Resistência à Doença/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Metabolômica , Família Multigênica/genética , Família Multigênica/fisiologia , Proteômica , Zea mays/imunologia , Zea mays/metabolismo , Zea mays/microbiologia
15.
Plant J ; 104(6): 1582-1602, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058410

RESUMO

Plant elicitor peptides (Peps) are conserved regulators of defense responses and models for the study of damage-associated molecular pattern-induced immunity. Although present as multigene families in most species, the functional relevance of these multigene families remains largely undefined. While Arabidopsis Peps appear largely redundant in function, previous work examining Pep-induced responses in maize (Zm) implied specificity of function. To better define the function of individual ZmPeps and their cognate receptors (ZmPEPRs), activities were examined by assessing changes in defense-associated phytohormones, specialized metabolites and global gene expression patterns, in combination with heterologous expression assays and analyses of CRISPR/Cas9-generated knockout plants. Beyond simply delineating individual ZmPep and ZmPEPR activities, these experiments led to a number of new insights into Pep signaling mechanisms. ZmPROPEP and other poaceous precursors were found to contain multiple active Peps, a phenomenon not previously observed for this family. In all, seven new ZmPeps were identified and the peptides were found to have specific activities defined by the relative magnitude of their response output rather than by uniqueness. A striking correlation was observed between individual ZmPep-elicited changes in levels of jasmonic acid and ethylene and the magnitude of induced defense responses, indicating that ZmPeps may collectively regulate immune output through rheostat-like tuning of phytohormone levels. Peptide structure-function studies and ligand-receptor modeling revealed structural features critical to the function of ZmPeps and led to the identification of ZmPep5a as a potential antagonist peptide able to competitively inhibit the activity of other ZmPeps, a regulatory mechanism not previously observed for this family.


Assuntos
Peptídeos/fisiologia , Defesa das Plantas contra Herbivoria , Zea mays/fisiologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Peptídeos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/fisiologia , Zea mays/genética , Zea mays/imunologia , Zea mays/metabolismo
16.
Nat Plants ; 6(8): 1008-1019, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690890

RESUMO

The survival of all living organisms requires the ability to detect attacks and swiftly counter them with protective immune responses. Despite considerable mechanistic advances, the interconnectivity of signalling modules often remains unclear. A newly characterized protein, IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR), negatively regulates immune responses in both maize and Arabidopsis, with disrupted function resulting in enhanced disease resistance. IRR associates with and promotes canonical splicing of transcripts encoding defence signalling proteins, including the key negative regulator of pattern-recognition receptor signalling complexes, CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28). On immune activation by Plant Elicitor Peptides (Peps), IRR is dephosphorylated, disrupting interaction with CPK28 transcripts and resulting in the accumulation of an alternative splice variant encoding a truncated CPK28 protein with impaired kinase activity and diminished function as a negative regulator. We demonstrate a new mechanism linking Pep-induced post-translational modification of IRR with post-transcriptionally mediated attenuation of CPK28 function to dynamically amplify Pep signalling and immune output.


Assuntos
Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Resistência à Doença , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/fisiologia , Transativadores/fisiologia , Zea mays/metabolismo
17.
Nat Plants ; 5(10): 1043-1056, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527844

RESUMO

Duplication and divergence of primary pathway genes underlie the evolution of plant specialized metabolism; however, mechanisms partitioning parallel hormone and defence pathways are often speculative. For example, the primary pathway intermediate ent-kaurene is essential for gibberellin biosynthesis and is also a proposed precursor for maize antibiotics. By integrating transcriptional coregulation patterns, genome-wide association studies, combinatorial enzyme assays, proteomics and targeted mutant analyses, we show that maize kauralexin biosynthesis proceeds via the positional isomer ent-isokaurene formed by a diterpene synthase pair recruited from gibberellin metabolism. The oxygenation and subsequent desaturation of ent-isokaurene by three promiscuous cytochrome P450s and a new steroid 5α reductase indirectly yields predominant ent-kaurene-associated antibiotics required for Fusarium stalk rot resistance. The divergence and differential expression of pathway branches derived from multiple duplicated hormone-metabolic genes minimizes dysregulation of primary metabolism via the circuitous biosynthesis of ent-kaurene-related antibiotics without the production of growth hormone precursors during defence.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Genes de Plantas , Reguladores de Crescimento de Plantas/genética , Zea mays/genética , Ascomicetos , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Giberelinas/metabolismo , Redes e Vias Metabólicas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Zea mays/imunologia , Zea mays/metabolismo , Zea mays/microbiologia
18.
Plant J ; 98(3): 492-510, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659683

RESUMO

Insight into how plants simultaneously cope with multiple stresses, for example, when challenged with biotic stress from pathogen infection and abiotic stress from drought, is important both for understanding evolutionary trade-offs and optimizing crop responses to these stresses. Mechanisms by which initial plant immune signaling antagonizes abscisic acid (ABA) signal transduction require further investigation. Using a chemical genetics approach, the small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) has previously been identified due to its ability to suppress ABA signaling via plant immune signaling components. Here, we have used forward chemical genetics screening to identify DFPM-insensitive loci by monitoring the activity of ABA-inducible pRAB18::GFP in the presence of DFPM and ABA. The ability of DFPM to attenuate ABA signaling was reduced in rda mutants (resistant to DFPM inhibition of ABA signaling). One of the mutants, rda2, was mapped and is defective in a gene encoding a lectin receptor kinase. RDA2 functions in DFPM-mediated inhibition of ABA-mediated reporter expression. RDA2 is required for DFPM-mediated activation of immune signaling, including phosphorylation of mitogen-activated protein kinase (MAPK) 3 (MPK3) and MPK6, and induction of immunity marker genes. Our study identifies a previously uncharacterized receptor kinase gene that is important for DFPM-mediated immune signaling and inhibition of ABA signaling. We demonstrate that the lectin receptor kinase RDA2 is essential for perceiving the DFPM signal and activating MAPKs, and that MKK4 and MKK5 are required for DFPM interference with ABA signal transduction.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Biosci Biotechnol Biochem ; 82(8): 1309-1315, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29699437

RESUMO

To aid in the identification and quantification of biologically and agriculturally significant natural products, tandem mass spectrometry can provide accurate structural information with high selectivity and sensitivity. In this study, diagnostic fragmentation patterns of isoflavonoids were examined by liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). The fragmentation scheme for [M+H-2CO]+ ions derived from isoflavones and [M+H-B-ring-CO]+ ions derived from 5-hydroxyisoflavones, were investigated using different isotopically labeled isoflavones, specifically [1',2',3',4',5',6',2,3,4-13C9] and [2',3',5',6',2-D5] isoflavones. Specific isotopically labeled isoflavones were prepared through the biosynthetic incorporation of pharmacologically applied 13C- and D-labelled L-phenylalanine precursors in soybean plants following the application of insect elicitors. Using this approach, we empirically demonstrate that the [M+H-2CO]+ ion is generated by an intramolecular proton rearrangement during fragmentation. Furthermore, [M+H-B-ring-CO]+ ion is demonstrated to contain a C2H moiety derived from C-ring of 5-hydroxyisoflavones. A mechanistic understanding of characteristic isoflavone fragmentation patterns contributes to the efficacy and confidence in identifying related isoflavones by LC-MSn.


Assuntos
Glycine max/metabolismo , Isoflavonas/química , Isótopos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida/métodos , Insetos/fisiologia , Isoflavonas/análise , Isoflavonas/normas , Fenilalanina/química , Prótons , Padrões de Referência , Glycine max/parasitologia
20.
Plant Physiol ; 176(4): 2677-2690, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475898

RESUMO

Terpenoids are a major component of maize (Zea mays) chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, ENT-COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3ß-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in Zman2 mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3ß,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of ZmAN2 and ZmKSL4 in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens Fusarium verticillioides and Fusarium graminearum Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL-1, while trihydroxydolabrene-mediated inhibition was specific to Fverticillioides These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience.


Assuntos
Vias Biossintéticas , Diterpenos/metabolismo , Estresse Fisiológico , Zea mays/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Resistência à Doença/genética , Diterpenos/química , Fusarium/classificação , Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , Estrutura Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Zea mays/genética , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...