Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 773: 145062, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940714

RESUMO

Chemical-contaminant mixtures are widely reported in large stream reaches in urban/agriculture-developed watersheds, but mixture compositions and aggregate biological effects are less well understood in corresponding smaller headwaters, which comprise most of stream length, riparian connectivity, and spatial biodiversity. During 2014-2017, the U.S. Geological Survey (USGS) measured 389 unique organic analytes (pharmaceutical, pesticide, organic wastewater indicators) in 305 headwater streams within four contiguous United States (US) regions. Potential aquatic biological effects were evaluated for estimated maximum and median exposure conditions using multiple lines of evidence, including occurrence/concentrations of designed-bioactive pesticides and pharmaceuticals and cumulative risk screening based on vertebrate-centric ToxCast™ exposure-response data and on invertebrate and nonvascular plant aquatic life benchmarks. Mixed-contaminant exposures were ubiquitous and varied, with 78% (304) of analytes detected at least once and cumulative maximum concentrations up to more than 156,000 ng/L. Designed bioactives represented 83% of detected analytes. Contaminant summary metrics correlated strong-positive (rho (ρ): 0.569-0.719) to multiple watershed-development metrics, only weak-positive to point-source discharges (ρ: 0.225-353), and moderate- to strong-negative with multiple instream invertebrate metrics (ρ: -0.373 to -0.652). Risk screening indicated common exposures with high probability of vertebrate-centric molecular effects and of acute toxicity to invertebrates, respectively. The results confirm exposures to broad and diverse contaminant mixtures and provide convincing multiple lines of evidence that chemical contaminants contribute substantially to adverse multi-stressor effects in headwater-stream communities.

2.
Sci Total Environ ; 781: 146711, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33798883

RESUMO

The United States (US) National Park Service (NPS) manages protected public lands to preserve biodiversity. Exposure to and effects of bioactive organic contaminants in NPS streams are challenges for resource managers. Recent assessment of pesticides and pharmaceuticals in protected-streams within the urbanized NPS Southeast Region (SER) indicated the importance of fluvial inflows from external sources as drivers of aquatic contaminant-mixture exposures. Great Smoky Mountains National Park (GRSM), lies within SER, has the highest biodiversity and annual visitation of NPS parks, but, in contrast to the previously studied systems, straddles a high-elevation hydrologic divide; this setting limits fluvial-inflows of contaminants but potentially increases visitation-driven contaminant deliveries. We leveraged the unique characteristics of GRSM to test further the importance of fluvial contaminant inflows as drivers of protected-stream exposures and to inform the relative importance of potential additional contaminant transport mechanisms, by comparing the estimated risks of 328 pesticides and pharmaceuticals in water at 16 GRSM stream locations to those estimated previously in SER streams. Extensive mixtures (31 compounds) were only observed in an atypical reach on the boundary of GRSM downstream of a wastewater discharge, while limited mixtures (2-5 compounds) were observed in one stream with elevated visitation pressure (recreational "tube floating"). The insecticide, imidacloprid, used to eradicate hemlock woolly adelgid, was detected in 8 (50%) streams. Infrequent exceedances of a cumulative ToxCast-based, exposure-activity ratio (ΣEAR) 0.001 screening-level of concern suggested limited risk to non-target, aquatic vertebrates, whereas exceedances of a cumulative benchmark-based, invertebrate toxicity quotient (ΣTQ) 0.1 screening level at 8 locations indicated generally high risk to invertebrates. The results are consistent with the importance of fluvial transport from extra-park sources as a driver of bioactive-contaminant mixture exposures in protected streams and illustrate the potential additional risks from visitation-driven and tactical-use-pesticides.


Assuntos
Praguicidas , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Parques Recreativos , Praguicidas/análise , Estados Unidos , Poluentes Químicos da Água/análise
3.
PLoS One ; 15(1): e0228214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999738

RESUMO

Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014-2017, the United States Geological Survey measured 111 pharmaceutical compounds in 308 headwater streams (261 urban-gradient sites sampled 3-5 times, 47 putative low-impact sites sampled once) in 4 regions across the US. Simultaneous exposures to multiple pharmaceutical compounds (pharmaceutical mixtures) were observed in 91% of streams (248 urban-gradient, 32 low-impact), with 88 analytes detected across all sites and cumulative maximum concentrations up to 36,142 ng/L per site. Cumulative detections and concentrations correlated to urban land use and presence/absence of permitted WWTP discharges, but pharmaceutical mixtures also were common in the 75% of sampled streams without WWTP. Cumulative exposure-activity ratios (EAR) indicated widespread transient exposures with high probability of molecular effects to vertebrates. Considering the potential individual and interactive effects of the detected pharmaceuticals and the recognized analytical underestimation of the pharmaceutical-contaminant (unassessed parent compounds, metabolites, degradates) space, these results demonstrate a nation-wide environmental concern and the need for watershed-scale mitigation of in-stream pharmaceutical contamination.


Assuntos
Exposição Ambiental , Preparações Farmacêuticas/análise , Rios , Poluentes Químicos da Água/análise , Animais , Ecossistema , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Humanos , Estados Unidos
4.
Sci Total Environ ; 704: 135431, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31896231

RESUMO

Globally, protected areas offer refugia for a broad range of taxa including threatened and endangered species. In the United States (US), the National Park Service (NPS) manages public lands to preserve biodiversity, but increasing park visitation and development of surrounding landscapes increase exposure to and effects from bioactive contaminants. The risk (exposure and hazard) to NPS protected-stream ecosystems within the highly urbanized southeast region (SER) from bioactive contaminants was assessed in five systems based on 334 pesticide and pharmaceutical analytes in water and 119 pesticides in sediment. Contaminant mixtures were common across all sampled systems, with approximately 24% of the unique analytes (80/334) detected at least once and 15% (49/334) detected in half of the surface-water samples. Pharmaceuticals were observed more frequently than pesticides, consistent with riparian buffers and concomitant spatial separation from non-point pesticide sources in four of the systems. To extrapolate exposure data to biological effects space, site-specific cumulative exposure-activity ratios (ΣEAR) were calculated for detected surface-water contaminants with available ToxCast data; common exceedances of a 0.001 ΣEAR effects-screening threshold raise concerns for molecular toxicity and possible, sub-lethal effects to non-target, aquatic vertebrates. The results illustrate the need for continued management of protected resources to reduce contaminant exposure and preserve habitat quality, including prioritization of conservation practices (riparian buffers) near stream corridors and increased engagement with upstream/up-gradient property owners and municipal wastewater facilities.


Assuntos
Praguicidas/análise , Animais , Ecossistema , Monitoramento Ambiental , Parques Recreativos , Estados Unidos , Poluentes Químicos da Água
5.
Sci Total Environ ; 655: 70-83, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469070

RESUMO

Complex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence. Results demonstrate that mixed-contaminant exposures are ubiquitous and varied in sampled headwater streams. Approximately 56% (264) of the 475 compounds were detected at least once across all sites. Cumulative maximum concentrations ranged 1,922-162,346ngL-1 per site. Chemical occurrence significantly correlated to urban land use but was not related to presence/absence of wastewater treatment facility discharges. Designed bioactive chemicals represent about 2/3rd of chemicals detected, notably pharmaceuticals and pesticides, qualitative evidence for possible adverse biological effects. Comparative Toxicogenomics Database chemical-gene associations applied to maximum exposure conditions indicate >12,000 and 2,900 potential gene targets were predicted at least once across all sites for fish and invertebrates, respectively. Analysis of cumulative exposure-activity ratios provided additional evidence that, at a minimum, transient exposures with high probability of molecular effects to vertebrates were common. Finally, cumulative detections and concentrations correlated inversely with invertebrate metrics from in-stream surveys. The results demonstrate widespread instream exposure to extensive contaminant mixtures and compelling multiple lines of evidence for adverse effects on aquatic communities.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Misturas Complexas/toxicidade , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios/química , Poluentes Químicos da Água , Misturas Complexas/análise , Ecossistema , Previsões , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...