Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 7(3): e1001314, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21408619

RESUMO

Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Sistema de Sinalização das MAP Quinases , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Genes de Helmintos , Genoma Helmíntico , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , RNA de Helmintos/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Fatores de Virulência/metabolismo
2.
Methods Mol Biol ; 351: 139-54, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16988432

RESUMO

Caenorhabditis elegans is well suited for toxicological studies owing to its established biology, short generation time, large brood size, and readily scorable life traits. Quantitative parameters of C. elegans that can be assayed include growth, size, progeny production, behavior, and mortality. Qualitative parameters of toxicity, such as changes in appearance or movement, can also be determined. This chapter describes four assays we have used for analyzing the toxic effects of Bacillus thuringiensis crystal proteins toward C. elegans. The assays are quantitative growth measurement, brood size measurement, and determination of lethal concentration, as well as a qualitative health assay based on worm appearance. Although these assays are described for crystal proteins, the approaches are suited for the studies of other toxins with C. elegans.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Comportamento Animal/efeitos dos fármacos , Bioensaio , Caenorhabditis elegans/crescimento & desenvolvimento , Endotoxinas/toxicidade , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Bioensaio/métodos , Endotoxinas/química , Endotoxinas/farmacologia , Proteínas Hemolisinas , Dose Letal Mediana
3.
Proc Natl Acad Sci U S A ; 101(30): 10995-1000, 2004 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-15256590

RESUMO

Cytolytic pore-forming toxins are important for the virulence of many disease-causing bacteria. How target cells molecularly respond to these toxins and whether or not they can mount a defense are poorly understood. By using microarrays, we demonstrate that the nematode Caenorhabditis elegans responds robustly to Cry5B, a member of the pore-forming Crystal toxin family made by Bacillus thuringiensis. This genomic response is distinct from that seen with a different stressor, the heavy metal cadmium. A p38 mitogen-activated protein kinase (MAPK) kinase and a c-Jun N-terminal-like MAPK are both transcriptionally up-regulated by Cry5B. Moreover, both MAPK pathways are functionally important because elimination of either leads to animals that are (i) hypersensitive to a low, chronic dose of toxin and (ii) hypersensitive to a high, brief dose of toxin such that the animal might naturally encounter in the wild. These results extend to mammalian cells because inhibition of p38 results in the hypersensitivity of baby hamster kidney cells to aerolysin, a pore-forming toxin that targets humans. Furthermore, we identify two downstream transcriptional targets of the p38 MAPK pathway, ttm-1 and ttm-2, that are required for defense against Cry5B. Our data demonstrate that cells defend against pore-forming toxins by means of conserved MAPK pathways.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Caenorhabditis elegans/fisiologia , Endotoxinas/toxicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Hemolisinas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Helmintos/genética , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Int J Med Microbiol ; 293(7-8): 599-607, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15149037

RESUMO

The interaction of pathogenic bacteria with a target host is regulated both by bacterial virulence factors and by host components that either protect the host or that promote pathogenesis. The soil nematode Caenorhabditis elegans is a host for a number of bacterial pathogens, as briefly reviewed here. Bacillus thuringiensis (Bt) is a pathogenic bacteria that C. elegans is likely to encounter naturally in the soil. The pore-forming Crystal (Cry) toxins made by Bt are recognized as the dominant virulence factor in this host-pathogen interaction. Forward genetic screens for C. elegans mutants resistant to the Cry toxin, Cry5B, have identified a host carbohydrate structure that promotes pathogenesis. Data suggest this structure is likely to be a Cry5B receptor expressed in the host intestine. This finding is discussed in light of other carbohydrate receptors for bacterial toxins. To investigate host-toxin interactions on a global level, the response of C. elegans to the pore-forming Cry5B is also being investigated by gene transcription profiling (microarrays). These data are beginning to reveal a diverse intracellular response to toxin exposure. To put these investigations in perspective, host responses to other pore-forming toxins are discussed. Investigations with Cry5B in C. elegans show a promising beginning in helping to elucidate host-toxin and host-pathogen interactions.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas , Caenorhabditis elegans/microbiologia , Endotoxinas/metabolismo , Animais , Bacillus thuringiensis/imunologia , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/imunologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo dos Carboidratos , Carboidratos/imunologia , Endotoxinas/imunologia , Proteínas Hemolisinas , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo
5.
J Biol Chem ; 278(46): 45594-602, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12944392

RESUMO

Crystal (Cry) proteins made by the bacterium Bacillus thuringiensis are pore-forming toxins that specifically target insects and nematodes and are used around the world to kill insect pests. To better understand how pore-forming toxins interact with their host, we have screened for Caenorhabditis elegans mutants that resist Cry protein intoxication. We find that Cry toxin resistance involves the loss of two glycosyltransferase genes, bre-2 and bre-4. These glycosyltransferases function in the intestine to confer susceptibility to toxin. Furthermore, they are required for the interaction of active toxin with intestinal cells, suggesting they make an oligosaccharide receptor for toxin. Similarly, the bre-3 resistance gene is also required for toxin interaction with intestinal cells. Cloning of the bre-3 gene indicates it is the C. elegans homologue of the Drosophila egghead (egh) gene. This identification is striking given that the previously identified bre-5 has homology to Drosophila brainiac (brn) and that egh-brn likely function as consecutive glycosyltransferases in Drosophila epithelial cells. We find that, like in Drosophila, bre-3 and bre-5 act in a single pathway in C. elegans. bre-2 and bre-4 are also part of this pathway, thereby extending it. Consistent with its homology to brn, we demonstrate that C. elegans bre-5 rescues the Drosophila brn mutant and that BRE-5 encodes the dominant UDP-GlcNAc:Man GlcNAc transferase activity in C. elegans. Resistance to Cry toxins has uncovered a four component glycosylation pathway that is functionally conserved between nematodes and insects and that provides the basis of the dominant mechanism of resistance in C. elegans.


Assuntos
Proteínas de Bactérias/farmacologia , Toxinas Bacterianas , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Drosophila , Endotoxinas/farmacologia , Glicosilação , Glicosiltransferases/fisiologia , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Clonagem Molecular , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Drosophila , Drosophila melanogaster , Endocitose , Teste de Complementação Genética , Glicosiltransferases/química , Proteínas Hemolisinas , Mucosa Intestinal/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Mutação , N-Acetilglucosaminiltransferases/metabolismo , Oligossacarídeos/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA