Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 348: 420-430, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636618

RESUMO

As a malignant tumour of lymphatic origin, B-cell lymphoma represents a significant challenge for drug delivery, where effective therapies must access malignant cells in the blood, organs and lymphatics while avoiding off-target toxicity. Subcutaneous (SC) administration of nanomedicines allows preferential access to both the lymphatic and blood systems and may therefore provide a route to enhanced drug exposure to lymphomas. Here we examine the impact of SC dosing on lymphatic exposure, pharmacokinetics (PK), and efficacy of AZD0466, a small molecule dual Bcl-2/Bcl-xL inhibitor conjugated to a 'DEP®' G5 poly-l-lysine dendrimer. PK studies reveal that the plasma half-life of the dendrimer-drug conjugate is 8-times longer than that of drug alone, providing evidence of slow release from the circulating dendrimer nanocarrier. The SC dosed construct also shows preferential lymphatic transport, with over 50% of the bioavailable dose recovered in thoracic lymph. Increases in dose (up to 400 mg/kg) are well tolerated after SC administration and studies in a model of disseminated lymphoma in mice show that high dose SC treatment outperforms IV administration using doses that lead to similar total plasma exposure (lower peak concentrations but extended exposure after SC). These data show that the DEP® dendrimer can act as a circulating drug depot accessing both the lymphatic and blood circulatory systems. SC administration improves lymphatic exposure and facilitates higher dose administration due to improved tolerability. Higher dose SC administration also results in improved efficacy, suggesting that drug delivery systems that access both plasma and lymph hold significant potential for the treatment of haematological cancers where lymphatic and extranodal dissemination are poor prognostic factors.


Assuntos
Antineoplásicos , Dendrímeros , Linfoma , Animais , Dendrímeros/química , Injeções Subcutâneas , Linfa , Sistema Linfático , Linfoma/tratamento farmacológico , Camundongos
2.
Bioorg Med Chem Lett ; 24(21): 4984-8, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288185

RESUMO

Previous investigations identified 2'-C-Me-branched ribo-C-nucleoside adenosine analogues, 1, which contains a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base, and 2, which contains an imidazo[2,1-f][1,2,4]triazin-4-amine heterocyclic base as two compounds with promising anti-HCV in vitro activity. This Letter describes the synthesis and evaluation of a series of novel analogues of these compounds substituted at the 2-, 7-, and 8-positions of the heterocyclic bases. A number of active new HCV inhibitors were identified but most compounds also demonstrated unacceptable cytotoxicity. However, the 7-fluoro analogue of 1 displayed good potency with a promising cytotherapeutic margin.


Assuntos
Antivirais/farmacologia , Proliferação de Células/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Imidazóis/química , Nucleosídeos/farmacologia , Pirróis/química , Triazinas/química , Replicação Viral/efeitos dos fármacos , Antivirais/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Estrutura Molecular , Nucleosídeos/química , RNA Viral/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
ACS Med Chem Lett ; 5(6): 679-84, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944743

RESUMO

Nucleoside analogues have long been recognized as prospects for the discovery of direct acting antivirals (DAAs) to treat hepatitis C virus because they have generally exhibited cross-genotype activity and a high barrier to resistance. C-Nucleosides have the potential for improved metabolism and pharmacokinetic properties over their N-nucleoside counterparts due to the presence of a strong carbon-carbon glycosidic bond and a non-natural heterocyclic base. Three 2'CMe-C-adenosine analogues and two 2'CMe-guanosine analogues were synthesized and evaluated for their anti-HCV efficacy. The nucleotide triphosphates of four of these analogues were found to inhibit the NS5B polymerase, and adenosine analogue 1 was discovered to have excellent pharmacokinetic properties demonstrating the potential of this drug class.

4.
Chem Rev ; 105(7): 2765-810, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16011324
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA