Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 353: 792-801, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493948

RESUMO

The bioavailability of peptides co-delivered with permeation enhancers following oral administration remains low and highly variable. Two factors that may contribute to this are the dilution of the permeation enhancer in the intestinal fluid, as well as spreading of the released permeation enhancer and peptide in the lumen by intestinal motility. In this work we evaluated an Intestinal Administration Device (IAD) designed to reduce the luminal dilution of drug and permeation enhancer, and to minimize movement of the dosage form in the intestinal lumen. To achieve this, the IAD utilizes an expanding design that holds immediate release mini tablets and places these in contact with the intestinal epithelium, where unidirectional drug release can occur. The expanding conformation limits movement of the IAD in the intestinal tract, thereby enabling drug release at a single focal point in the intestine. A pig model was selected to study the ability of the IAD to promote intestinal absorption of the peptide MEDI7219 formulated together with the permeation enhancer sodium caprate. We compared the IAD to intestinally administered enteric coated capsules and an intestinally administered solution. The IAD restricted movement of the immediate release tablets in the small intestine and histological evaluation of the mucosa indicated that high concentrations of sodium caprate were achieved. Despite significant effect of the permeation enhancer on the integrity of the intestinal epithelium, the bioavailability of MEDI7219 was of the same order of magnitude as that achieved with the solution and enteric coated capsule formulations (2.5-3.8%). The variability in plasma concentrations of MEDI7219 were however lower when delivered using the IAD as compared to the solution and enteric coated capsule formulations. This suggests that dosage forms that can limit intestinal dilution and control the position of drug release can be a way to reduce the absorptive variability of peptides delivered with permeation enhancers but do not offer significant benefits in terms of increasing bioavailability.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Suínos , Mucosa Intestinal/metabolismo , Peptídeos/química , Absorção Intestinal , Administração Oral , Comprimidos , Disponibilidade Biológica
2.
Mol Pharm ; 19(7): 2564-2572, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35642793

RESUMO

In this work, we studied the intestinal absorption of a peptide with a molecular weight of 4353 Da (MEDI7219) and a protein having a molecular weight of 11 740 Da (PEP12210) in the rat intestinal instillation model and compared their absorption to fluorescein isothiocyanate (FITC)-labeled dextrans of similar molecular weights (4 and 10 kDa). To increase the absorption of the compounds, the permeation enhancer sodium caprate (C10) was included in the liquid formulations at concentrations of 50 and 300 mM. All studied compounds displayed an increased absorption rate and extent when delivered together with 50 mM C10 as compared to control formulations not containing C10. The time period during which the macromolecules maintained an increased permeability through the intestinal epithelium was approximately 20 min for all studied compounds at 50 mM C10. For the formulations containing 300 mM C10, it was noted that the dextrans displayed an increased absorption rate (compared to 50 mM C10), and their absorption continued for at least 60 min. The absorption rate of MEDI7219, on the other hand, was similar at both studied C10 concentrations, but the duration of absorption was extended at the higher enhancer concentration, leading to an increase in the overall extent of absorption. The absorption of PEP12210 was similar in terms of the rate and duration at both studied C10 concentrations. This is likely caused by the instability of this molecule in the intestinal lumen. The degradation decreases the luminal concentrations over time, which in turn limits absorption at time points beyond 20 min. The results from this study show that permeation enhancement effects cannot be extrapolated between different types of macromolecules. Furthermore, to maximize the absorption of a macromolecule delivered together with C10, prolonging the duration of absorption appears to be important. In addition, the macromolecule needs to be stable enough in the intestinal lumen to take advantage of the prolonged absorption time window enabled by the permeation enhancer.


Assuntos
Dextranos , Absorção Intestinal , Animais , Fluoresceína-5-Isotiocianato , Mucosa Intestinal/metabolismo , Permeabilidade , Ratos
3.
Mol Pharm ; 19(3): 904-917, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35104408

RESUMO

Understanding of peptide aggregation propensity is an important aspect in pharmaceutical development of peptide drugs. In this work, methodologies based on all-atom molecular dynamics (AA-MD) simulations and 1H NMR (in neat H2O) were evaluated as tools for identification and investigation of peptide aggregation. A series of structurally similar, pharmaceutically relevant peptides with known differences in aggregation behavior (D-Phe6-GnRH, ozarelix, cetrorelix, and degarelix) were investigated. The 1H NMR methodology was used to systematically investigate variations in aggregation with peptide concentration and time. Results show that 1H NMR can be used to detect the presence of coexisting classes of aggregates and the inclusion or exclusion of counterions in peptide aggregates. Interestingly, results suggest that the acetate counterions are included in aggregates of ozarelix and cetrorelix but not in aggregates of degarelix. The peptides investigated in AA-MD simulations (D-Phe6-GnRH, ozarelix, and cetrorelix) showed the same rank order of aggregation propensity as in the NMR experiments. The AA-MD simulations also provided molecular-level insights into aggregation dynamics, aggregation pathways, and the influence of different structural elements on peptide aggregation propensity and intermolecular interactions within the aggregates. Taken together, the findings from this study illustrate that 1H NMR and AA-MD simulations can be useful, complementary tools in early evaluation of aggregation propensity and formulation development for peptide drugs.


Assuntos
Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética
4.
Mol Pharm ; 19(1): 200-212, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34928160

RESUMO

In this work, we set out to better understand how the permeation enhancer sodium caprate (C10) influences the intestinal absorption of macromolecules. FITC-dextran 4000 (FD4) was selected as a model compound and formulated with 50-300 mM C10. Absorption was studied after bolus instillation of liquid formulation to the duodenum of anesthetized rats and intravenously as a reference, whereafter plasma samples were taken and analyzed for FD4 content. It was found that the AUC and Cmax of FD4 increased with increasing C10 concentration. Higher C10 concentrations were associated with an increased and extended absorption but also increased epithelial damage. Depending on the C10 concentration, the intestinal epithelium showed significant recovery already at 60-120 min after administration. At the highest studied C10 concentrations (100 and 300 mM), the absorption of FD4 was not affected by the colloidal structures of C10, with similar absorption obtained when C10 was administered as micelles (pH 8.5) and as vesicles (pH 6.5). In contrast, the FD4 absorption was lower when C10 was administered at 50 mM formulated as micelles as compared to vesicles. Intestinal dilution of C10 and FD4 revealed a trend of decreasing FD4 absorption with increasing intestinal dilution. However, the effect was smaller than that of altering the total administered C10 dose. Absorption was similar when the formulations were prepared in simulated intestinal fluids containing mixed micelles of bile salts and phospholipids and in simple buffer solution. The findings in this study suggest that in order to optimally enhance the absorption of macromolecules, high (≥100 mM) initial intestinal C10 concentrations are likely needed and that both the concentration and total dose of C10 are important parameters.


Assuntos
Coloides/química , Ácidos Decanoicos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Animais , Microscopia Crioeletrônica , Ácidos Decanoicos/análise , Ácidos Decanoicos/química , Dextranos/farmacologia , Sinergismo Farmacológico , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacologia , Mucosa Intestinal/química , Masculino , Ratos , Ratos Wistar
5.
J Pharm Sci ; 110(1): 228-238, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212160

RESUMO

In this study a 3D printed capsule designed to break from the physiological pressures in the antropyloric region was evaluated for its ability to deliver the synthetic octapeptide octreotide in beagle dogs when co-formulated with the permeation enhancer sodium caprate. The pressure sensitive capsules were compared to traditional enteric coated hard gelatin capsules and enteric coated tablets. Paracetamol, which is completely absorbed in dogs, was included in the formulations and used as an absorption marker to give information about the in vivo performance of the dosage forms. The pressure sensitive capsules released drug in 50% of the dogs. In the cases where drug was released, there was no difference in octreotide bioavailability or Cmax compared to the enteric coated dosage forms. When comparing all dosage forms, a correlation was seen between paracetamol Cmax and octreotide bioavailability, suggesting that a high drug release rate may be beneficial for peptide absorption when delivered together with sodium caprate.


Assuntos
Peptídeos , Impressão Tridimensional , Administração Oral , Animais , Disponibilidade Biológica , Cápsulas , Cães , Comprimidos com Revestimento Entérico
6.
Drug Dev Ind Pharm ; 32(2): 185-96, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16537199

RESUMO

The physicochemical properties of 1-benzenesulfonyl-4-(piperazin-1-yl)-indole hydrochloride, a novel 5-HT(6) receptor antagonist for the treatment of obesity were characterized. Two solid state forms were identified at ambient conditions (23 degrees C): an anhydrate form (1) and a hydrate form (2), with 1.5 moles of H(2)O. The latter easily dehydrates and rehydrates without affecting the crystal morphology. Investigations of the propensity for interconversion between the two forms reveal that a) conversion of 2-->1 takes place above 145 degrees C and that b) conversion of 1-->2 only occurs after crystallization from supersaturated aqueous solutions at a water activity >or=0.94 or in the presence of comparable amounts of crystals of 2 in water at ambient conditions. However, in an equimolar suspension of 1 and 2 at 37 degrees C no phase transformation was observed. Thus, the difference in chemical potential between the two forms is small. Form 1 was shown to have overall favorable solid state properties and, hence, considered the preferred form for continued pharmaceutical development. The characterization was performed by means of light microscopy, scanning electron microscopy, powder X-ray diffraction, FTIR/NIR-spectroscopy, differential scanning calorimetry, hot stage microscopy, thermogravimetry, dynamic vapor sorption, Karl Fischer water content determination, phase stability studies of suspensions, solubility, and intrinsic dissolution rate measurements.


Assuntos
Fármacos Antiobesidade/química , Indóis/química , Piperazinas/química , Antagonistas do Receptor 5-HT1 de Serotonina , Técnicas de Química Analítica , Estabilidade de Medicamentos , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...