Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(33): 6281-6289, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973071

RESUMO

Magic angle spinning nuclear magnetic resonance spectroscopy experiments are widely employed in the characterization of solid media. The approach is incredibly versatile but deleteriously suffers from low sensitivity, which may be alleviated by adopting dynamic nuclear polarization methods, resulting in large signal enhancements. Paramagnetic metal ions such as Gd3+ have recently shown promising results as polarizing agents for 1H, 13C, and 15N nuclear spins. We demonstrate that the widely available and inexpensive chemical agent Gd(NO3)3 achieves significant signal enhancements for the 13C and 15N nuclear sites of [2-13C,15N]glycine at 9.4 T and ∼105 K. Analysis of the signal enhancement profiles at two magnetic fields, in conjunction with electron paramagnetic resonance data, reveals the solid effect to be the dominant signal enhancement mechanism. The signal amplification obtained paves the way for efficient dynamic nuclear polarization without the need for challenging synthesis of Gd3+ polarizing agents.


Assuntos
Campos Magnéticos , Metais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Íons , Espectroscopia de Ressonância Magnética/métodos
2.
J Phys Chem C Nanomater Interfaces ; 125(24): 13370-13381, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34239656

RESUMO

Pillar[n]arenes are supramolecular assemblies that can perform a range of technologically important molecular separations which are enabled by their molecular flexibility. Here, we probe dynamical behavior by performing a range of variable-temperature solid-state NMR experiments on microcrystalline perethylated pillar[n]arene (n = 5, 6) and the corresponding three pillar[6]arene xylene adducts in the 100-350 K range. This was achieved either by measuring site-selective motional averaged 13C 1H heteronuclear dipolar couplings and subsequently accessing order parameters or by determining 1H and 13C spin-lattice relaxation times and extracting correlation times based on dipolar and/or chemical shift anisotropy relaxation mechanisms. We demonstrate fast motional regimes at room temperature and highlight a significant difference in dynamics between the core of the pillar[n]arenes, the protruding flexible ethoxy groups, and the adsorbed xylene guest. Additionally, unexpected and sizable 13C 1H heteronuclear dipolar couplings for a quaternary carbon were observed for p-xylene adsorbed in pillar[6]arene only, indicating a strong host-guest interaction and establishing the p-xylene location inside the host, confirming structural refinements.

3.
Nat Chem ; 13(8): 778-785, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33972755

RESUMO

Several organic-inorganic hybrid materials from the metal-organic framework (MOF) family have been shown to form stable liquids at high temperatures. Quenching then results in the formation of melt-quenched MOF glasses that retain the three-dimensional coordination bonding of the crystalline phase. These hybrid glasses have intriguing properties and could find practical applications, yet the melt-quench phenomenon has so far remained limited to a few MOF structures. Here we turn to hybrid organic-inorganic perovskites-which occupy a prominent position within materials chemistry owing to their functional properties such as ion transport, photoconductivity, ferroelectricity and multiferroicity-and show that a series of dicyanamide-based hybrid organic-inorganic perovskites undergo melting. Our combined experimental-computational approach demonstrates that, on quenching, they form glasses that largely retain their solid-state inorganic-organic connectivity. The resulting materials show very low thermal conductivities (~0.2 W m-1 K-1), moderate electrical conductivities (10-3-10-5 S m-1) and polymer-like thermomechanical properties.

4.
J Am Chem Soc ; 140(22): 6921-6930, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754488

RESUMO

The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.

5.
Chemistry ; 23(68): 17217-17221, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053892

RESUMO

Using variable temperature 2 H static NMR spectra and 13 C spin-lattice relaxation times (T1 ), we show that two different porous organic cages with tubular architectures are ultra-fast molecular rotors. The central para-phenylene rings that frame the "windows" to the cage voids display very rapid rotational rates of the order of 1.2-8×106  Hz at 230 K with low activation energy barriers in the 12-18 kJ mol-1 range. These cages act as hosts to iodine guest molecules, which dramatically slows down the rotational rates of the phenylene groups (5-10×104  Hz at 230 K), demonstrating potential use in applications that require molecular capture and release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...