Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(2): 246-254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196032

RESUMO

Most membrane fusion reactions in eukaryotic cells are mediated by multisubunit tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here we present a cryo-electron microscopy structure of the simplest known MTC, the 255-kDa Dsl1 complex of Saccharomyces cerevisiae, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.


Assuntos
Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Fusão de Membrana
2.
Curr Opin Cell Biol ; 83: 102191, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421936

RESUMO

The compartmentalization of eukaryotic cells is reliant on the fidelity of vesicle-mediated intracellular transport. Vesicles deliver their cargo via membrane fusion, a process requiring membrane tethers, Sec1/Munc18 (SM) proteins, and SNAREs. These components function in concert to ensure that membrane fusion is efficient and accurate, but the mechanisms underlying their cooperative action are still in many respects mysterious. In this brief review, we highlight recent progress toward a more integrative understanding of the vesicle fusion machinery. We focus particular attention on cryo-electron microscopy structures of intact multisubunit tethers in complex with SNAREs or SM proteins, as well as a structure of an SM protein bound to multiple SNAREs. The insights gained from this work emphasize the advantages of studying the fusion machinery intact and in context.


Assuntos
Fusão de Membrana , Proteínas SNARE , Microscopia Crioeletrônica , Proteínas SNARE/metabolismo , Proteínas Munc18/química , Proteínas Munc18/metabolismo
3.
bioRxiv ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778436

RESUMO

Most membrane fusion reactions in eukaryotic cells are mediated by membrane tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here, we present a cryo-EM structure of the simplest known MTC, the 255-kDa Dsl1 complex, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with remarkable and unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.

4.
Annu Rev Biochem ; 90: 581-603, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823650

RESUMO

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.


Assuntos
Proteínas SNARE/química , Proteínas SNARE/metabolismo , Doença/genética , Humanos , Fusão de Membrana , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Mutação , Pinças Ópticas , Fosforilação , Domínios Proteicos , Dobramento de Proteína , Proteínas SNARE/genética
5.
Nat Plants ; 6(12): 1480-1490, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230314

RESUMO

Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.


Assuntos
Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Estrutura Molecular , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Curr Biol ; 30(22): 4399-4412.e7, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32916113

RESUMO

Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.


Assuntos
Caseína Quinase I/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae , Ubiquitinação/fisiologia
7.
Elife ; 92020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804076

RESUMO

Fusion of intracellular trafficking vesicles is mediated by the assembly of SNARE proteins into membrane-bridging complexes. SNARE-mediated membrane fusion requires Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. Paradoxically, the SM protein Munc18-1 traps the Qa-SNARE protein syntaxin-1 in an autoinhibited closed conformation. Here we present the structure of a second SM-Qa-SNARE complex, Vps45-Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Although Tlg2 has a pronounced tendency to form homo-tetramers, Vps45 can rescue Tlg2 tetramers into stoichiometric Vps45-Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.


Assuntos
Proteínas Munc18/química , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Chaetomium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 295(30): 10125-10135, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32409579

RESUMO

Multisubunit-tethering complexes (MTCs) are large (250 to >750 kDa), conserved macromolecular machines that are essential for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in all eukaryotes. MTCs are thought to organize membrane trafficking by mediating the initial long-range interaction between a vesicle and its target membrane and promoting the formation of membrane-bridging SNARE complexes. Previously, we reported the structure of the yeast Dsl1 complex, the simplest known MTC, which is essential for coat protein I (COPI) mediated transport from the Golgi to the endoplasmic reticulum (ER). This structure suggests how the Dsl1 complex might tether a vesicle to its target membrane by binding at one end to the COPI coat and at the other to ER-associated SNAREs. Here, we used X-ray crystallography to investigate these Dsl1-SNARE interactions in greater detail. The Dsl1 complex comprises three subunits that together form a two-legged structure with a central hinge. We found that distal regions of each leg bind N-terminal Habc domains of the ER SNAREs Sec20 (a Qb-SNARE) and Use1 (a Qc-SNARE). The observed binding modes appear to anchor the Dsl1 complex to the ER target membrane while simultaneously ensuring that both SNAREs are in open conformations, with their SNARE motifs available for assembly. The proximity of the two SNARE motifs, and therefore their ability to enter the same SNARE complex, will depend on the relative orientation of the two Dsl1 legs. These results underscore the critical roles of SNARE N-terminal domains in mediating interactions with other elements of the vesicle docking and fusion machinery.


Assuntos
Modelos Moleculares , Proteínas SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografia por Raios X , Estrutura Quaternária de Proteína
9.
Proc Natl Acad Sci U S A ; 116(48): 24031-24040, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712447

RESUMO

Coat protein I (COPI)-coated vesicles mediate retrograde transport from the Golgi to the endoplasmic reticulum (ER), as well as transport within the Golgi. Major progress has been made in defining the structure of COPI coats, in vitro and in vivo, at resolutions as high as 9 Å. Nevertheless, important questions remain unanswered, including what specific interactions stabilize COPI coats, how COPI vesicles recognize their target membranes, and how coat disassembly is coordinated with vesicle fusion and cargo delivery. Here, we use X-ray crystallography to identify a conserved site on the COPI subunit α-COP that binds to flexible, acidic sequences containing a single tryptophan residue. One such sequence, found within α-COP itself, mediates α-COP homo-oligomerization. Another such sequence is contained within the lasso of the ER-resident Dsl1 complex, where it helps mediate the tethering of Golgi-derived COPI vesicles at the ER membrane. Together, our findings suggest that α-COP homo-oligomerization plays a key role in COPI coat stability, with potential implications for the coordination of vesicle tethering, uncoating, and fusion.


Assuntos
Complexo I de Proteína do Envoltório/química , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/química , Triptofano/fisiologia , Motivos de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/química , Modelos Moleculares , Saccharomyces cerevisiae , Triptofano/química
11.
ACS Chem Biol ; 14(3): 378-389, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763066

RESUMO

Bacteria use a cell-cell communication process called quorum sensing to coordinate collective behaviors. Quorum sensing relies on production and group-wide detection of extracellular signal molecules called autoinducers. Here, we probe the activity of the Pseudomonas aeruginosa LasR quorum-sensing receptor using synthetic agonists based on the structure of the native homoserine lactone autoinducer. The synthetic compounds range from low to high potency, and agonist activity tracks with the ability of the agonist to stabilize the LasR protein. Structural analyses of the LasR ligand binding domain complexed with representative synthetic agonists reveal two modes of ligand binding, one mimicking the canonical autoinducer binding arrangement, and the other with the lactone head group rotated approximately 150°. Iterative mutagenesis combined with chemical synthesis reveals the amino acid residues and the chemical moieties, respectively, that are key to enabling each mode of binding. Simultaneous alteration of LasR residues Thr75, Tyr93, and Ala127 converts low-potency compounds into high-potency compounds and converts ligands that are nearly inactive into low-potency compounds. These results show that the LasR binding pocket displays significant flexibility in accommodating different ligands. The ability of LasR to bind ligands in different conformations, and in so doing, alter their potency as agonists, could explain the difficulties that have been encountered in the development of competitive LasR inhibitors.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/metabolismo , Percepção de Quorum/efeitos dos fármacos , Transativadores/metabolismo , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Aminoácidos/química , Escherichia coli/efeitos dos fármacos , Ligantes , Estrutura Molecular , Mutação , Ligação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Transdução de Sinais , Relação Estrutura-Atividade
12.
Elife ; 72018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540253

RESUMO

Sec1/Munc18-family (SM) proteins are required for SNARE-mediated membrane fusion, but their mechanism(s) of action remain controversial. Using single-molecule force spectroscopy, we found that the SM protein Munc18-1 catalyzes step-wise zippering of three synaptic SNAREs (syntaxin, VAMP2, and SNAP-25) into a four-helix bundle. Catalysis requires formation of an intermediate template complex in which Munc18-1 juxtaposes the N-terminal regions of the SNARE motifs of syntaxin and VAMP2, while keeping their C-terminal regions separated. SNAP-25 binds the templated SNAREs to induce full SNARE zippering. Munc18-1 mutations modulate the stability of the template complex in a manner consistent with their effects on membrane fusion, indicating that chaperoned SNARE assembly is essential for exocytosis. Two other SM proteins, Munc18-3 and Vps33, similarly chaperone SNARE assembly via a template complex, suggesting that SM protein mechanism is conserved.


Assuntos
Neurônios/metabolismo , Proteínas SNARE/metabolismo , Sequência de Aminoácidos , Animais , Exocitose , Humanos , Fusão de Membrana , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutação , Ligação Proteica , Ratos , Proteínas SNARE/genética , Homologia de Sequência de Aminoácidos , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
13.
Nat Struct Mol Biol ; 23(8): 758-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27428773

RESUMO

The conserved oligomeric Golgi (COG) complex orchestrates vesicular trafficking to and within the Golgi apparatus. Here, we use negative-stain electron microscopy to elucidate the architecture of the hetero-octameric COG complex from Saccharomyces cerevisiae. Intact COG has an intricate shape, with four (or possibly five) flexible legs, that differs strikingly from that of the exocyst complex and appears to be well suited for vesicle capture and fusion.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Complexo de Golgi/ultraestrutura , Microscopia Eletrônica , Complexos Multiproteicos/ultraestrutura , Estrutura Quaternária de Proteína
14.
Nat Rev Mol Cell Biol ; 17(8): 465-79, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27301672

RESUMO

Intracellular membrane fusion is mediated in most cases by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). However, the assembly of such complexes in vitro is inefficient, and their uncatalysed disassembly is undetectably slow. Here, we focus on the cellular machinery that orchestrates assembly and disassembly of SNARE complexes, thereby regulating processes ranging from vesicle trafficking to organelle fusion to neurotransmitter release. Rapid progress is being made on many fronts, including the development of more realistic cell-free reconstitutions, the application of single-molecule biophysics, and the elucidation of X-ray and high-resolution electron microscopy structures of the SNARE assembly and disassembly machineries 'in action'.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas SNARE/metabolismo , Animais , Humanos
15.
PLoS Biol ; 14(5): e1002464, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27219477

RESUMO

In a process called quorum sensing, bacteria communicate with chemical signal molecules called autoinducers to control collective behaviors. In pathogenic vibrios, including Vibrio cholerae, the accumulation of autoinducers triggers repression of genes responsible for virulence factor production and biofilm formation. The vibrio autoinducer molecules bind to transmembrane receptors of the two-component histidine sensor kinase family. Autoinducer binding inactivates the receptors' kinase activities, leading to dephosphorylation and inhibition of the downstream response regulator LuxO. Here, we report the X-ray structure of LuxO in its unphosphorylated, autoinhibited state. Our structure reveals that LuxO, a bacterial enhancer-binding protein of the AAA+ ATPase superfamily, is inhibited by an unprecedented mechanism in which a linker that connects the catalytic and regulatory receiver domains occupies the ATPase active site. The conformational change that accompanies receiver domain phosphorylation likely disrupts this interaction, providing a mechanistic rationale for LuxO activation. We also determined the crystal structure of the LuxO catalytic domain bound to a broad-spectrum inhibitor. The inhibitor binds in the ATPase active site and recapitulates elements of the natural regulatory mechanism. Remarkably, a single inhibitor molecule may be capable of inhibiting an entire LuxO oligomer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Domínios Proteicos , Proteínas Repressoras/antagonistas & inibidores , Uracila/análogos & derivados , Uracila/farmacologia
16.
Proc Natl Acad Sci U S A ; 112(46): 14242-7, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578768

RESUMO

Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding ßγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αß'ε-COP B-subcomplex. We present the structure of the C-terminal µ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP µ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.


Assuntos
Proteína Coatomer/química , Saccharomyces cerevisiae/química , Triptofano/química , Motivos de Aminoácidos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Calorimetria Indireta , Catepsina A/química , Catepsina A/genética , Catepsina A/metabolismo , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptofano/genética , Triptofano/metabolismo
17.
Science ; 349(6252): 1111-4, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26339030

RESUMO

Fusion of intracellular transport vesicles requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18-family (SM) proteins. Membrane-bridging SNARE complexes are critical for fusion, but their spontaneous assembly is inefficient and may require SM proteins in vivo. We report x-ray structures of Vps33, the SM subunit of the yeast homotypic fusion and vacuole protein-sorting (HOPS) complex, bound to two individual SNAREs. The two SNAREs, one from each membrane, are held in the correct orientation and register for subsequent complex assembly. Vps33 and potentially other SM proteins could thus act as templates for generating partially zipped SNARE assembly intermediates. HOPS was essential to mediate SNARE complex assembly at physiological SNARE concentrations. Thus, Vps33 appears to catalyze SNARE complex assembly through specific SNARE motif recognition.


Assuntos
Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/ultraestrutura
18.
Proc Natl Acad Sci U S A ; 111(44): 15762-7, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331899

RESUMO

The conserved oligomeric Golgi (COG) complex is required, along with SNARE and Sec1/Munc18 (SM) proteins, for vesicle docking and fusion at the Golgi. COG, like other multisubunit tethering complexes (MTCs), is thought to function as a scaffold and/or chaperone to direct the assembly of productive SNARE complexes at the sites of membrane fusion. Reflecting this essential role, mutations in the COG complex can cause congenital disorders of glycosylation. A deeper understanding of COG function and dysfunction will likely depend on elucidating its molecular structure. Despite some progress toward this goal, including EM studies of COG lobe A (subunits 1-4) and higher-resolution structures of portions of Cog2 and Cog4, the structures of COG's eight subunits and the principles governing their assembly are mostly unknown. Here, we report the crystal structure of a complex between two lobe B subunits, Cog5 and Cog7. The structure reveals that Cog5 is a member of the complexes associated with tethering containing helical rods (CATCHR) fold family, with homology to subunits of other MTCs including the Dsl1, exocyst, and Golgi-associated retrograde protein (GARP) complexes. The Cog5-Cog7 interaction is analyzed in relation to the Dsl1 complex, the only other CATCHR-family MTC for which subunit interactions have been characterized in detail. Biochemical and functional studies validate the physiological relevance of the observed Cog5-Cog7 interface, indicate that it is conserved from yeast to humans, and demonstrate that its disruption in human cells causes defects in trafficking and glycosylation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Complexos Multiproteicos/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cristalografia por Raios X , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
19.
Mol Biol Cell ; 25(21): 3401-12, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25187651

RESUMO

The peripheral endoplasmic reticulum (ER) network is dynamically maintained by homotypic (ER-ER) fusion. In Saccharomyces cerevisiae, the dynamin-like GTPase Sey1p can mediate ER-ER fusion, but sey1Δ cells have no growth defect and only slightly perturbed ER structure. Recent work suggested that ER-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate a Sey1p-independent ER-ER fusion pathway. However, an alternative explanation--that the observed phenotypes arose from perturbed vesicle trafficking--could not be ruled out. In this study, we used candidate and synthetic genetic array (SGA) approaches to more fully characterize SNARE-mediated ER-ER fusion. We found that Dsl1 complex mutations in sey1Δ cells cause strong synthetic growth and ER structure defects and delayed ER-ER fusion in vivo, additionally implicating the Dsl1 complex in SNARE-mediated ER-ER fusion. In contrast, cytosolic coat protein I (COPI) vesicle coat mutations in sey1Δ cells caused no synthetic defects, excluding perturbed retrograde trafficking as a cause for the previously observed synthetic defects. Finally, deleting the reticulons that help maintain ER architecture in cells disrupted for both ER-ER fusion pathways caused almost complete inviability. We conclude that the ER SNAREs and the Dsl1 complex directly mediate Sey1p-independent ER-ER fusion and that, in the absence of both pathways, cell viability depends upon membrane curvature-promoting reticulons.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexos Multiproteicos , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
20.
Mol Biol Cell ; 24(21): 3406-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006484

RESUMO

During the budding of coat protein complex II (COPII) vesicles from transitional endoplasmic reticulum (tER) sites, Sec16 has been proposed to play two distinct roles: negatively regulating COPII turnover and organizing COPII assembly at tER sites. We tested these ideas using the yeast Pichia pastoris. Redistribution of Sec16 to the cytosol accelerates tER dynamics, supporting a negative regulatory role for Sec16. To evaluate a possible COPII organization role, we dissected the functional regions of Sec16. The central conserved domain, which had been implicated in coordinating COPII assembly, is actually dispensable for normal tER structure. An upstream conserved region (UCR) localizes Sec16 to tER sites. The UCR binds COPII components, and removal of COPII from tER sites also removes Sec16, indicating that COPII recruits Sec16 rather than the other way around. We propose that Sec16 does not in fact organize COPII. Instead, regulation of COPII turnover can account for the influence of Sec16 on tER sites.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Pichia/metabolismo , Sítios de Ligação/genética , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Microscopia de Fluorescência , Mutação , Pichia/genética , Ligação Proteica , Transporte Proteico/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...