Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Endocrinol ; 28(2): 99-110, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11932207

RESUMO

We investigated the role of hepatocyte growth factor (HGF) in beta-cell growth and its complex intracellular signal transduction pathways. Cell proliferation was measured in the beta-cell line INS-1 using [3H]thymidine incorporation. Activation of mitogenic signaling proteins was assessed using co-immunoprecipitation, immunoblot analysis and specific protein activity inhibitors in proliferation assays. HGF (1 x 375 nM) increased INS-1 cell proliferation in the presence of 3-24 mM glucose up to 45-fold vs unstimulated controls. HGF exceeded the effect of glucose alone (2 x 2-fold at 3 mM glucose and 1 x 7-fold in the presence of 15 mM glucose). The HGF-induced INS-1 cell proliferation was further increased by addition of IGF-I or GH. Stimulation with HGF activated the JAK-2/STAT-5 pathway with a subsequent activation of phosphatidylinositol-3'-kinase (PI3'K). PI3'K activation was necessary for HGF- and glucose-stimulated INS-1 cell proliferation. The effect of PI3'K was mediated via 70 kDa S6 kinase and protein kinase B, which showed maximum activation in the presence of 3-6 mM glucose. Protein kinase C was essential for HGF-induced INS-1 cell proliferation. The HGF effect was also mediated at low glucose concentrations via insulin receptor substrate 4 (IRS-4) whereas other IRS proteins did not show any activation. High glucose concentrations also showed an increased IRS-4/PI3'K binding and therefore activation. In conclusion, beta-cell proliferation is mediated via complex interacting signal transduction pathways. HGF, in contrast to other growth factors, seems to be of importance particularly in the presence of low glucose concentrations and therefore takes a special role in this complex concert.


Assuntos
Glucose/deficiência , Fator de Crescimento de Hepatócito/farmacologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Glucose/farmacologia , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Timidina/metabolismo
2.
J Biol Chem ; 276(24): 21110-20, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11274216

RESUMO

It has been shown that IGF-1-induced pancreatic beta-cell proliferation is glucose-dependent; however, the mechanisms responsible for this glucose dependence are not known. Adenoviral mediated expression of constitutively active phosphatidylinositol 3-kinase (PI3K) in the pancreatic beta-cells, INS-1, suggested that PI3K was not necessary for glucose-induced beta-cell proliferation but was required for IGF-1-induced mitogenesis. Examination of the signaling components downstream of PI3K, 3-phosphoinositide-dependent kinase 1, protein kinase B (PKB), glycogen synthase kinase-3, and p70-kDa-S6-kinase (p70(S6K)), suggested that a major part of glucose-dependent beta-cell proliferation requires activation of mammalian target of rapamycin/p70(S6K), independent of phosphoinositide-dependent kinase 1/PKB activation. Adenoviral expression of the kinase-dead form of PKB in INS-1 cells decreased IGF-1-induced beta-cell proliferation. However, a surprisingly similar decrease was also observed in adenoviral wild type and constitutively active PKB-infected cells. Upon analysis of extracellular signal-regulated protein kinase 1 and 2 (ERK1/ERK2), an increase in ERK1/ERK2 phosphorylation activation by glucose and IGF-1 was observed in kinase-dead PKB-infected cells, but this phosphorylation activation was inhibited in the constitutively active PKB-infected cells. Hence, there is a requirement for the activation of both ERK1/ERK2 and mammalian target of rapamycin/p70(S6K) signal transduction pathways for a full commitment to glucose-induced pancreatic beta-cell mitogenesis. However, for IGF-1-induced activation, these pathways must be carefully balanced, because chronic activation of one (PI3K/PKB) can lead to dampening of the other (ERK1/2), reducing the mitogenic response.


Assuntos
Divisão Celular/fisiologia , Glucose/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Adenoviridae , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Vetores Genéticos , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Ilhotas Pancreáticas , Cinética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Timidina/metabolismo , Transfecção
3.
Endocrinology ; 142(1): 229-40, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11145586

RESUMO

Pancreatic beta-cell mitogenesis is increased by insulin-like growth factor I (IGF-I) in a glucose-dependent manner. In this study it was found that alternative beta-cell nutrient fuels to glucose, pyruvate, and glutamine/leucine independently induced and provided a platform for IGF-I to induce INS-1 cell DNA synthesis in the absence of serum. In contrast, long chain FFA (>/=C(12)) inhibited 15 mM glucose-induced [(3)H]thymidine incorporation (+/-10 nM IGF-I) by 95% or more within 24 h above 0.2 mM FFA complexed to 1% BSA (K(0.5) for palmitate/1% BSA = 65-85 microM for 24 h; t(0.5) for 0.2 mM palmitate/1% BSA = approximately 6 h). FFA-mediated inhibition of glucose/IGF-I-induced ss-cell DNA synthesis was reversible, and FFA oxidation did not appear to be required, nor did FFA interfere with glucose metabolism in INS-1 cells. An examination of mitogenic signal transduction pathways in INS-1 cells revealed that glucose/IGF-I induction of early signaling elements in SH2-containing protein (Shc)- and insulin receptor substrate-1/2-mediated pathways leading to downstream mitogen-activated protein kinase and phosphoinositol 3'-kinase activation, were unaffected by FFA. However, glucose-/IGF-I-induced activation of protein kinase B (PKB) was significantly inhibited, and protein kinase Czeta was chronically activated by FFA. It is possible that FFA-mediated inhibition of ss-cell mitogenesis contributes to the reduction of beta-cell mass and the subsequent failure to compensate for peripheral insulin resistance in vivo that is key to the pathogenesis of obesity-linked diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Divisão Celular/efeitos dos fármacos , DNA/biossíntese , Ácidos Graxos não Esterificados/farmacologia , Glucose/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Ilhotas Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases , Animais , Linhagem Celular , DNA/efeitos dos fármacos , Ativação Enzimática , Proteína Adaptadora GRB2 , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Palmítico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Domínios de Homologia de src
4.
Biochem J ; 344 Pt 3: 649-58, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10585851

RESUMO

Mitogenic signal-transduction pathways have not been well defined in pancreatic beta-cells. In the glucose-sensitive rat beta-cell line, INS-1, glucose (6-18 mM) increased INS-1 cell proliferation (>20-fold at 15 mM glucose). Rat growth hormone (rGH) also induced INS-1 cell proliferation, but this was glucose-dependent in the physiologically relevant concentration range (6-18 mM glucose). The combination of rGH (10 nM) and glucose (15 mM) was synergistic, maximally increasing INS-1 cell proliferation by >50-fold. Moreover, glucose-dependent rGH-induced INS-1 cell proliferation was increased further by addition of insulin-like growth factor 1 (IGF-1; 10 nM) to >90-fold at 12 mM glucose. Glucose metabolism and phosphatidylinositol-3'-kinase (PI3'K) activation were necessary for both glucose- and rGH-stimulated INS-1 cell proliferation. Glucose (>3 mM) independently increased tyrosine-phosphorylation-mediated recruitment of growth-factor-bound protein 2 (Grb2)/murine sons of sevenless-1 protein (mSOS) and PI3'K to insulin receptor substrate (IRS)-1 and IRS-2, as well as SH2-containing protein (Shc) association with Grb2/mSOS and downstream activation of mitogen-activated protein kinase and 70 kDa S6 kinase. Glucose-induced IRS- and Shc-mediated signal transduction was enhanced further by the addition of IGF-1, but not rGH. In contrast, rGH was able to activate Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signal transduction at glucose concentrations above 3 mM, but neither glucose independently, nor glucose with added IGF-1, were able to activate the JAK2/STAT5 signalling pathway. Thus rGH-mediated proliferation of beta-cells is directly via the JAK2/STAT5 pathway without engaging the Shc or IRS signal-transduction pathways, although activation of PI3'K may play an important permissive role in the glucose-dependent aspect of rGH-induced beta-cell mitogensis. The additive effect of rGH and IGF-1 on glucose-dependent beta-cell proliferation is therefore reflective of rGH and IGF-1 activating distinctly different mitogenic signalling pathways in beta-cells with minimal crosstalk between them.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Hormônio do Crescimento/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Proteínas do Leite , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Transativadores/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Proteína Adaptadora GRB2 , Proteínas Substratos do Receptor de Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/metabolismo , Janus Quinase 2 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo , Fator de Transcrição STAT5 , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteína Son Of Sevenless de Drosófila/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
6.
J Biol Chem ; 273(28): 17771-9, 1998 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-9651378

RESUMO

Nutrients and certain growth factors stimulate pancreatic beta-cell mitogenesis, however, the appropriate mitogenic signal transduction pathways have not been defined. In the glucose-sensitive pancreatic beta-cell line, INS-1, it was found that glucose (6-18 mM) independently increased INS-1 cell proliferation (>20-fold at 15 mM glucose). Insulin-like growth factor I (IGF-I)-induced INS-1 cell proliferation was glucose-dependent only in the physiologically relevant concentration range (6-18 mM glucose). The combination of IGF-I and glucose was synergistic, increasing INS-1 cell proliferation >50-fold at 15 mM glucose + 10 nM IGF-I. Glucose metabolism and phosphatidylinositol 3'-kinase (PI 3'-kinase) activation were necessary for both glucose and IGF-I-stimulated INS-1 cell proliferation. IGF-I and 15 mM glucose increased tyrosine phosphorylation mediated recruitment of Grb2/mSOS and PI 3'-kinase to IRS-2 and pp60. Glucose and IGF-I also induced Shc association with Grb2/mSOS. Glucose (3-18 mM) and IGF-I, independently of glucose, activated mitogen-activated protein kinase but this did not correlate with IGF-I-induced beta-cell proliferation. In contrast, p70(S6K) was activated with increasing glucose concentration (between 6 and 18 mM), and potentiated by IGF-I in the same glucose concentration range which correlated with INS-1 cell proliferation rate. Thus, glucose and IGF-I-induced beta-cell proliferation were mediated via a signaling mechanism that was facilitated by mitogen-activated protein kinase but dependent on IRS-mediated induction of PI 3'-kinase activity and downstream activation of p70(S6K). The glucose dependence of IGF-I mediated INS-1 cell proliferation emphasizes beta-cell signaling mechanisms are rather unique in being tightly linked to glycolytic metabolic flux.


Assuntos
Glucose/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Virais/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...