Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Foods ; 12(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37372536

RESUMO

Legumes processing involves large amounts of water to remove anti-nutrients, reduce uncomfortable effects, and improve organoleptic characteristics. This procedure generates waste and high levels of environmental pollution. This work aims to evaluate the galacto-oligosaccharide (GOS) and general carbohydrate composition of legume wastewaters and assess their potential for growing lactic acid bacteria. Legume wastewater extracts were produced by soaking and/or cooking the dry seeds of chickpeas and lentils in distilled water and analysed using high-performance liquid chromatography with refractive index detection. GOS were present in all extracts, which was also confirmed by Fourier transform infrared spectroscopy (FTIR). C-BW extract, produced by cooking chickpeas without soaking, provided the highest extraction yield of 3% (g/100 g dry seeds). Lentil extracts were the richest source of GOS with degree of polymerization ≥ 5 (0.4%). Lactiplantibacillus plantarum CIDCA 83114 was able to grow in de Man, Rogosa, and Sharpe (MRS) broth prepared by replacing the glucose naturally present in the medium with chickpeas' and lentils' extracts. Bacteria were able to consume the mono and disaccharides present in the media with extracts, as demonstrated by HPLC and FTIR. These results provide support for the revalorisation of chickpeas' and lentils' wastewater, being also a sustainable way to purify GOS by removing mono and disaccharides from the mixtures.

2.
Rev. argent. microbiol ; 55(1): 61-70, mar. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1441186

RESUMO

Abstract Clostridioides difficile is a spore-forming anaerobe microorganism associated to nosocomial diarrhea. Its virulence is mainly associated with TcdA and TcdB toxins, encoded by their respective tcdA and tcdB genes. These genes are part of the pathogenicity locus (PaLoc). Our aim was to characterize relevant C. difficile toxinotypes circulating in the hospital setting. The tcdA and tcdB genes were amplified and digested with different restriction enzymes: EcoRI for tcdA; HincII and AccI for tcdB. In addition, the presence of the cdtB (binary toxin) gene, TcdA and TcdB toxins by dot blot and the cytotoxic effect of culture supernatants on Vero cells, were evaluated. Altogether, these studies revealed three different circulating toxinotypes according to Rupnik's classification: 0, I and VIII, being the latter the most prevalent one. Even though more studies are certainly necessary (e.g. sequencing analysis), it is worth noting that the occurrence of toxinotype I could be related to the introduction of bacteria from different geographical origins. The multivariate analysis conducted on the laboratory values of individuals infected with the most prevalent toxinotype (VIII) showed that the isolates associated with fatal outcomes (GCD13, GCD14 and GCD22) are located in regions of the biplots related to altered laboratory values at admission. In other patients, although laboratory values at admission were not correlated, levels of urea, creatinine and white blood cells were positively correlated after the infection was diagnosed. Our study reveals the circulation of different toxinotypes of C. difficile strains in this public hospital. The variety of toxinotypes can arise from pre-existing microorganisms as well as through the introduction of bacteria from other geographical regions. The existence of microorganisms with different pathogenic potential is relevant for the control, follow-up, and treatment of the infections.


Resumen Clostridioides difficile es un anaerobio esporulado que se asocia con episodios de diarreas hospitalarias. Su virulencia se encuentra vinculada, principalmente, a las toxinas TcdA y TcdB, codificadas por sus respectivos genes, tcdA y tcdB, que son parte de un locus de patogenicidad (PaLoc). Nuestro objetivo fue caracterizar los toxinotipos de C. difficile circulantes en un hospital público. Los genes tcdA y tcdB fueron amplificados y digeridos con diferentes enzimas de restricción: EcoRI para tcdA; HincII y AccI para tcdB. Además, se evaluó la presencia de cdtB (gen de la toxina binaria B) y de las toxinas A y B (por dot blot), así como el efecto citotóxico de sobrenadantes de cultivo sobre células Vero. En conjunto, estos estudios revelaron tres toxinotipos circulantes según la clasificación de Rupnik: 0, I y VIII; el más prevalente fue el último. Aunque son necesarios más estudios (ej., secuenciación), es interesante notar que la presencia del toxinotipo I podría estar relacionada con la introducción de bacterias de diferente origen geográfico. En los pacientes infectados con el toxinotipo VIII, el análisis multivariante de los resultados de laboratorio mostró que los aislamientos asociados a decesos (GCD13, GCD14 y GCD22) estaban situados en regiones de los biplots relacionados con valores de laboratorio alterados al momento de la internación. En los otros pacientes, aunque no se observó correlación entre los valores de laboratorio al momento de la internación y la evolución clínica, los niveles de urea, creatinina y recuento de glóbulos blancos estuvieron correlacionados positivamente entre sí una vez diagnosticada la infección. Nuestro estudio revela la circulación de diferentes toxinotipos de C. difficile en un mismo hospital público. La variedad de toxinotipos puede originarse a partir de microorganismos preexistentes en la región, así como también por la introducción de bacterias provenientes de otras regiones geográficas. La existencia de microorganismos con diferente potencial patogénico es relevante para el control, el seguimiento y el tratamiento de las infecciones.

3.
Rev Argent Microbiol ; 55(1): 73-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35840437

RESUMO

Clostridioides difficile is a spore-forming anaerobe microorganism associated to nosocomial diarrhea. Its virulence is mainly associated with TcdA and TcdB toxins, encoded by their respective tcdA and tcdB genes. These genes are part of the pathogenicity locus (PaLoc). Our aim was to characterize relevant C. difficile toxinotypes circulating in the hospital setting. The tcdA and tcdB genes were amplified and digested with different restriction enzymes: EcoRI for tcdA; HincII and AccI for tcdB. In addition, the presence of the cdtB (binary toxin) gene, TcdA and TcdB toxins by dot blot and the cytotoxic effect of culture supernatants on Vero cells, were evaluated. Altogether, these studies revealed three different circulating toxinotypes according to Rupnik's classification: 0, I and VIII, being the latter the most prevalent one. Even though more studies are certainly necessary (e.g. sequencing analysis), it is worth noting that the occurrence of toxinotype I could be related to the introduction of bacteria from different geographical origins. The multivariate analysis conducted on the laboratory values of individuals infected with the most prevalent toxinotype (VIII) showed that the isolates associated with fatal outcomes (GCD13, GCD14 and GCD22) are located in regions of the biplots related to altered laboratory values at admission. In other patients, although laboratory values at admission were not correlated, levels of urea, creatinine and white blood cells were positively correlated after the infection was diagnosed. Our study reveals the circulation of different toxinotypes of C. difficile strains in this public hospital. The variety of toxinotypes can arise from pre-existing microorganisms as well as through the introduction of bacteria from other geographical regions. The existence of microorganisms with different pathogenic potential is relevant for the control, follow-up, and treatment of the infections.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Animais , Chlorocebus aethiops , Humanos , Toxinas Bacterianas/genética , Toxinas Bacterianas/análise , Enterotoxinas/genética , Clostridioides difficile/genética , Clostridioides , Células Vero , Hospitais Públicos , Proteínas de Bactérias/genética
4.
Pharmaceutics ; 14(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456569

RESUMO

Polymer-liposome complexes (PLCs) can be efficiently applied for the treatment and/or diagnosis of several types of diseases, such as cancerous, dermatological, neurological, ophthalmic and orthopedic. In this work, temperature-/pH-sensitive PLC-based systems for controlled release were developed and characterized. The selected hydrophilic polymeric setup consists of copolymers of Pluronic®-poly(acrylic acid) (PLU-PAA) and Pluronic®-poly(N,N-dimethylaminoethyl methacrylate) (PLU-PD) synthesized by atom transfer radical polymerization (ATRP). The copolymers were incorporated into liposomes formulated from soybean lecithin, with different copolymer/phospholipid ratios (2.5, 5 and 10%). PLCs were characterized by evaluating their particle size, polydispersity, surface charge, capacity of release and encapsulation efficiency. Their cytotoxic potential was assessed by determining the viability of human epithelial cells exposed to them. The results showed that the incorporation of the synthesized copolymers positively contributed to the stabilization of the liposomes. The main accomplishments of this work were the innovative synthesis of PLU-PD and PLU-PAA by ATRP, and the liposome stabilization by their incorporation. The formulated PLCs exhibited relevant characteristics, notably stimuli-responsive attributes upon slight changes in pH and/or temperature, with proven absence of cellular toxicity, which could be of interest for the treatment or diagnosis of all diseases that cause some particular pH/temperature change in the target area.

5.
J Sci Food Agric ; 101(4): 1382-1388, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32833244

RESUMO

BACKGROUND: The most common milk-clotting enzymes in the cheese industry are recombinant chymosins. Food naturalness is a factor underpinning consumers' food choice. For consumers who avoid food with ingredients from genetically modified organisms (GMOs), the use of vegetable-based rennet substitute in the cheese formulation may be a suitable solution. Artichokes that deviate from optimal products, when allowed to bloom due to flower protease composition, are excellent as raw material for vegetable rennet preparation. As enzymatic milk clotting exerts a significant impact on the characteristics of the final product, this product should be studied carefully. RESULTS: Mature flowers from unharvested artichokes (Cynara scolymus cv. Francés) that did not meet aesthetic standards for commercialization were collected and used to prepare a flower extract. This extract, as a coagulant preparation, enabled the manufacture of cheeses with distinctive characteristics compared with cheeses prepared with chymosin. Rennet substitution did not affect the actual yield but led to significant changes in dry matter yield, humidity, water activity, protein content, and color, and conferred antioxidant activity to the cheeses. The rennet substitution promoted significant modifications in springiness, and in the microstructure of the cheese, with a more porous protein matrix and an increment in the size of the fat globules. Both formulations showed a similar microbiota evolution pattern with excellent microbiological quality and good sensory acceptance. CONCLUSIONS: The rennet substitute studied here produced a cheese adapted to specific market segments that demand more natural and healthier products made with a commitment to the environment but well accepted by a general cheese consumer. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Queijo/análise , Cynara scolymus/química , Extratos Vegetais/química , Animais , Ácido Aspártico Endopeptidases/química , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bovinos , Queijo/microbiologia , Flores/química , Manipulação de Alimentos , Humanos , Microbiota , Leite/química , Paladar
6.
World J Microbiol Biotechnol ; 33(3): 48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28176201

RESUMO

Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.


Assuntos
Citrobacter rodentium/fisiologia , Lactobacillus delbrueckii/fisiologia , Macrófagos/microbiologia , Probióticos/farmacologia , Animais , Antígeno B7-2/biossíntese , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Citometria de Fluxo , Lactobacillus/imunologia , Lactobacillus/fisiologia , Lactobacillus delbrueckii/imunologia , Macrófagos/imunologia , Camundongos , Microscopia de Fluorescência , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/imunologia , Nitritos/metabolismo , Fagocitose/imunologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Food Microbiol ; 155(3): 217-21, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22410267

RESUMO

The ability of galacto-oligosaccharides (GOS) to protect Lactobacillus delbrueckii subsp. bulgaricus upon freeze drying was analyzed on the basis of their capacity to form glassy structures. Glass transition temperatures (T(g)) of a GOS matrix at various relative humidities (RH) were determined by DSC. Survival of L. bulgaricus in a glassy GOS matrix was investigated after freezing, freeze drying, equilibration at different RHs and storage at different temperatures. At 32 °C, a drastic viability loss was observed. At 20 °C, the survival was affected by the water content, having the samples stored at lower RHs, the highest survival percentages. At 4°C, no decay in the cells count was observed after 45 days of storage. The correlation between molecular mobility [as measured by Proton nuclear magnetic resonance (¹H NMR)] and loss of viability explained the efficiency of GOS as cryoprotectants. The preservation of microorganisms was improved at low molecular mobility and this condition was obtained at low water contents and low storage temperatures. These results are important in the developing of new functional foods containing pre and probiotics.


Assuntos
Crioprotetores/química , Liofilização/métodos , Lactobacillus/fisiologia , Oligossacarídeos/química , Membrana Celular/fisiologia , Contagem de Colônia Microbiana , Umidade , Viabilidade Microbiana , Probióticos , Temperatura de Transição , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...