Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930281

RESUMO

The manufacture of damping alloy parts with stable damping properties and high mechanical performances in the selective laser melting (SLM) process is influenced by temperature evolution and residual stress distribution. Choosing an appropriate scanning strategy, namely the specific trajectory along which the laser head scans powders within given area, is crucial, but clearly defined criteria for scanning strategy design are lacking. In this study, a three-dimensional finite element model (FEM) of the SLM process for manufacturing a WE43 alloy component was established and validated against the published experimental data. Eleven different scanning strategies were designed and simulated, considering variables such as scanning track length, direction, Out-In or In-Out strategy, start point, and interlayer variation. The results showed that scanning strategy, geometry, and layer number collectively affect temperature, melt pool, and stress outputs. For instance, starting scanning at a colder part of the powder layer could lead to a high peak temperature and low melt pool depth. A higher layer number generally results in lower cooling rate, a lower temperature gradient, a longer melt pool life, and larger melt pool dimensions. Changing the start point between scanning circulations helps mitigate detrimental residual stress. This work highlights the potential of analyzing various scanning strategy-related variables, which contributes to reducing trial-and-error tests and selecting optimal scanning strategies under different product quality requirements. This article can assist in the design of appropriate scanning strategies to prevent defects such as element loss due to evaporation, poor bonding, and deformation or cracking from high residual stress. Additionally, identifying stress concentration locations and understanding the effects of geometry and layer number on thermal and mechanical behaviors can assist in geometry design.

2.
Sci Rep ; 14(1): 10351, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710929

RESUMO

Additive manufacturing of conductive layers on a dielectric substrate has garnered significant interest due to its promise to produce printed electronics efficiently and its capability to print on curved substrates. A considerable challenge encountered is the conductive layer's potential peeling due to inadequate adhesion with the dielectric substrate, which compromises the durability and functionality of the electronics. This study strives to facilitate the binding force through dielectric substrate surface modification using concentrated sulfuric acid and ultraviolet (UV) laser treatment. First, polyetheretherketone (PEEK) and nanoparticle silver ink were employed as the studied material. Second, the surface treatment of PEEK substrates was conducted across six levels of sulfuric acid exposure time and eight levels of UV laser scanning velocity. Then, responses such as surface morphology, roughness, elemental composition, chemical bonding characteristics, water contact angle, and surface free energy (SFE) were assessed to understand the effects of these treatments. Finally, the nanoparticle silver ink layer was deposited on the PEEK surface, and the adhesion force measured using a pull-off adhesion tester. Results unveiled a binding force of 0.37 MPa on unmodified surface, which escalated to 1.99 MPa with sulfuric acid treatment and 2.21 MPa with UV laser treatment. Additionally, cross-approach treatment investigations revealed that application sequence significantly impacts results, increasing binding force to 2.77 MPa. The analysis further delves into the influence mechanism of the surface modification on the binding force, elucidating that UV laser and sulfuric acid surface treatment methods hold substantial promise for enhancing the binding force between heterogeneous materials in the additive manufacturing of electronics.

3.
3D Print Addit Manuf ; 11(2): e876-e895, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689913

RESUMO

As an emerging additive manufacturing technology, inkjet printing has been increasingly applied in microelectronics field. However, due to the impacting and rebounding behaviors of conductive ink droplets impinging onto flat substrates, it is challenging to fabricate conductive lines with desired quality, such as suitable line width and line thickness, and matching resistance when it is used for interconnecting multifarious electronic components if there is not a proper configuration of operating parameters. To address this research gap, this article aims to investigate the effect of process parameters on the quality of conductive lines, including the platform temperature, printing speed, number of layers, and delay time (droplet interarrival time), are selected to conduct a full factorial experiment. First, the approximate parameter ranges for ensuring the continuity of conductive lines are determined. Second, this study analyzes the interactive effect among process parameters on line quality. Third, an artificial neural network (ANN) is constructed to predict the quality of printed lines. Results show that the line width does not increase with an increased number of layers, while the line thickness shows an increasing trend. The low resistance and high aspect ratio of printed line are achieved by printing 5 layers with the platform temperature of 70°C, the delay time of 12.2 ms, and the printing speed of 1139.39 mm/min. Moreover, the ANN model can be used to predict line width and line thickness with excellent performance, except for the resistance due to the irregular line edge. This study provides a useful guide for the selection of appropriate printing parameters to realize a diverse range of quality properties for 3D printed conductive lines in integrated circuits.

4.
Materials (Basel) ; 12(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609735

RESUMO

Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA