Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1249971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532970

RESUMO

Background: China is among the 10 high-burden tuberculosis (TB) countries in the world; thus, investigation and management of household contacts is an essential part of TB prevention strategy. Objective: To explore the knowledge, attitude, and practice (KAP) toward TB prevention and management among household contacts of TB patients. Methods: This cross-sectional study enrolled household contacts in Suzhou Hospital of Integrated Traditional Chinese and Western Medicine between September 2022 and January 2023; KAP and demographic characteristics were assessed with the self-designed questionnaire and analyzed by multivariate logistic regression. Results: A total of 503 participants were included; of them, 280 (55.78%) were female, and 303, (60.36%) aged ≥45 years. The KAP scores were 6.24 ± 2.20 (possible range: 0-12), 18.69 ± 2.80 (possible range: 0-36), and 20.37 ± 5.15 (possible range: 0-36), respectively. Suburban (OR = 0.18, 95% CI: 0.04-0.79, p = 0.023) and rural (OR = 0.12, 95% CI: 0.03-0.57, p = 0.008) were independently associated with knowledge. Positive attitude (OR = 7.03, 95% CI: 2.92-16.96, p < 0.001), education (high school or technical secondary school, OR = 4.91, 95% CI: 1.63-14.73, p = 0.005; college and above, OR = 14.94, 95% CI: 3.51-63.58, p < 0.001), and shorter disease duration (3-6 months, OR = 0.40, 95% CI: 0.18-0.90, p = 0.026) were independently associated with better practice scores. Conclusion: Household contacts of TB patients demonstrated insufficient knowledge, unfavorable attitude, and suboptimal practice toward TB prevention and management. Tailored interventions are needed to ensure information accessibility, especially for individuals living in suburban and rural areas.


Assuntos
Tuberculose , Humanos , Feminino , Masculino , Tuberculose/prevenção & controle , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Hospitais , China
2.
Cell Rep ; 43(3): 113963, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492218

RESUMO

T cell infiltration into white adipose tissue (WAT) drives obesity-induced adipose inflammation, but the mechanisms of obesity-induced T cell infiltration into WAT remain unclear. Our single-cell RNA sequencing reveals a significant impact of adipose stem cells (ASCs) on T cells. Transplanting ASCs from obese mice into WAT enhances T cell accumulation. C-C motif chemokine ligand 5 (CCL5) is upregulated in ASCs as early as 4 weeks of high-fat diet feeding, coinciding with the onset of T cell infiltration into WAT during obesity. ASCs and bone marrow transplantation experiments demonstrate that CCL5 from ASCs plays a crucial role in T cell accumulation during obesity. The production of CCL5 in ASCs is induced by tumor necrosis factor alpha via the nuclear factor κB pathway. Overall, our findings underscore the pivotal role of ASCs in regulating T cell accumulation in WAT during the early phases of obesity, emphasizing their importance in modulating adaptive immunity in obesity-induced adipose inflammation.


Assuntos
Tecido Adiposo , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Inflamação/patologia , Células-Tronco/metabolismo
3.
Nat Commun ; 13(1): 7838, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539421

RESUMO

Thyroid hormone (TH) is a thermogenic activator with anti-obesity potential. However, systemic TH administration has no obvious clinical benefits on weight reduction. Herein we selectively delivered triiodothyronine (T3) to adipose tissues by encapsulating T3 in liposomes modified with an adipose homing peptide (PLT3). Systemic T3 administration failed to promote thermogenesis in brown and white adipose tissues (WAT) due to a feedback suppression of sympathetic innervation. PLT3 therapy effectively obviated this feedback suppression on adrenergic inputs, and potently induced browning and thermogenesis of WAT, leading to alleviation of obesity, glucose intolerance, insulin resistance, and fatty liver in obese mice. Furthermore, PLT3 was much more effective than systemic T3 therapy in reducing hypercholesterolemia and atherosclerosis in apoE-deficient mice. These findings uncover WAT as a viable target mediating the therapeutic benefits of TH and provide a safe and efficient therapeutic strategy for obesity and its complications by delivering TH to adipose tissue.


Assuntos
Aterosclerose , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Camundongos , Animais , Tri-Iodotironina/metabolismo , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Hormônios Tireóideos/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Aterosclerose/metabolismo , Termogênese , Camundongos Endogâmicos C57BL
4.
FASEB J ; 36(11): e22611, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36250915

RESUMO

Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Antioxidantes , Catalase , Glutationa Peroxidase/metabolismo , Humanos , Malondialdeído , Obesidade/genética , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Suínos
5.
Biochem Biophys Res Commun ; 632: 158-164, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36209584

RESUMO

Endoplasmic reticulum (ER) stress is enhanced in non-alcoholic steatohepatitis (NASH). Among three signalling pathways, the IRE1α/XBP1 signalling pathway is strongly implicated in the pathogenesis of NASH but its significance is still largely uncharacterised. In this report, we constructed a hepatocyte-specific XBP1-Luciferase knock-in mouse model that allows in vivo monitoring of the IRE1α/XBP1 activity in hepatocytes. Using this mouse model, we found that IRE1α/XBP1 was activated within hepatocytes during the pathogenesis of NASH. Significantly, a specific IRE1α kinase-inhibiting RNase attenuator, KIRA8, attenuated NASH in mice. In conclusion, our hepatocyte-specific XBP1 splicing reporter mouse represents a valid model for research and drug development of NASH, which showed that the IRE1α-induced XBP splicing is potentiated in hepatocytes during pathogenesis of NASH. Furthermore, we carried out the proof-of-concept study to demonstrate that the allosteric IRE1α RNase inhibitor serves as a promising therapeutic agent for the treatment of NASH.


Assuntos
Endorribonucleases , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/efeitos dos fármacos , Endorribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Luciferases/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo
6.
Mol Cells ; 45(10): 673-684, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36254709

RESUMO

The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immuno-metabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.


Assuntos
Tecido Adiposo , Metabolismo Energético , Termogênese , Adulto , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Homeostase , Obesidade/metabolismo
7.
Nat Commun ; 13(1): 5208, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064857

RESUMO

Adipose tissue macrophage (ATM) inflammation is involved with meta-inflammation and pathology of metabolic complications. Here we report that in adipocytes, elevated lactate production, previously regarded as the waste product of glycolysis, serves as a danger signal to promote ATM polarization to an inflammatory state in the context of obesity. Adipocyte-selective deletion of lactate dehydrogenase A (Ldha), the enzyme converting pyruvate to lactate, protects mice from obesity-associated glucose intolerance and insulin resistance, accompanied by a lower percentage of inflammatory ATM and reduced production of pro-inflammatory cytokines such as interleukin 1ß (IL-1ß). Mechanistically, lactate, at its physiological concentration, fosters the activation of inflammatory macrophages by directly binding to the catalytic domain of prolyl hydroxylase domain-containing 2 (PHD2) in a competitive manner with α-ketoglutarate and stabilizes hypoxia inducible factor (HIF-1α). Lactate-induced IL-1ß was abolished in PHD2-deficient macrophages. Human adipose lactate level is positively linked with local inflammatory features and insulin resistance index independent of the body mass index (BMI). Our study shows a critical function of adipocyte-derived lactate in promoting the pro-inflammatory microenvironment in adipose and identifies PHD2 as a direct sensor of lactate, which functions to connect chronic inflammation and energy metabolism.


Assuntos
Adipócitos , Prolina Dioxigenases do Fator Induzível por Hipóxia , Inflamação , Lactato Desidrogenase 5 , Ácido Láctico , Macrófagos , Adipócitos/imunologia , Tecido Adiposo/imunologia , Animais , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Resistência à Insulina/genética , Resistência à Insulina/imunologia , Resistência à Insulina/fisiologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/imunologia , Lactato Desidrogenase 5/genética , Lactato Desidrogenase 5/imunologia , Ácido Láctico/imunologia , Macrófagos/imunologia , Camundongos , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/imunologia , Prolil Hidroxilases
8.
Adipocyte ; 11(1): 529-549, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36000239

RESUMO

Interscapular brown adipose tissue (iBAT) of both rabbits and humans exhibits a similar whitening phenomenon under physiological conditions. However, a detailed characterization of iBAT whitening in them is still lacking. Here, we chose rabbits as a model to gain a better understanding of the molecular signature changes during the whitening process of iBAT by transcriptomic analysis of rabbit iBAT at day 1, day 14, 1 month and 4 months after birth. We applied non-invasive MRI imaging to monitor the whitening process and correlated these changes with analysis of morphological, histological and molecular features. Principal component analysis (PCA) of differentially expressed genes delineated three major phases for the whitening process as Brown, Transition and Whitened BAT phases. RNA-sequencing data revealed that whitening of iBAT was an orchestrated process where multiple types of cells and tissues participated in a variety of physiological processes including neovascularization, formation of new nervous networks and immune regulation. Several key metabolic and signalling pathways contributed to whitening of iBAT, and immune cells and immune regulation appeared to play an overarching role.


Assuntos
Tecido Adiposo Marrom , Transcriptoma , Tecido Adiposo , Animais , Humanos , Coelhos
9.
ACS Bio Med Chem Au ; 2(3): 282-296, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35874496

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver diseases and is causally linked to hepatic insulin resistance and reduced fatty acid oxidation. Therapeutic treatments targeting both hepatic insulin resistance and lipid oxidative metabolism are considered as feasible strategies to alleviate this disease. Emerging evidence suggests Estrogen-Related Receptor alpha (ERRα), the first orphan nuclear receptor identified, as a master regulator in energy homeostasis by controlling glucose and lipid metabolism. Small molecules improving the functions of ERRα may provide a new option for management of NAFLD. In the present study, by using liver-specific Errα knockout mouse (Errα-LKO), we showed that liver-specific deletion of ERRα exacerbated diet-evoked fatty liver, hepatic and systemic insulin resistance in mice. A potent and selective ERRα agonist JND003 (7) was also discovered. In vitro and in vivo investigation demonstrated that the compound enhanced the transactivation of ERRα downstream target genes, which was accompanied by improved insulin sensitivity and fatty liver symptoms. Furthermore, the therapeutic effects were completely abolished in Errα-LKO mice, indicative of its on-target efficacy. Our study thus suggests that hepatic ERRα is a viable target for NAFLD and that ERRα agonist may serve as an intriguing pharmacological option for management of metabolic diseases.

11.
Adv Sci (Weinh) ; 9(20): e2200742, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524581

RESUMO

Dysfunctional triglyceride-very low-density lipoprotein (TG-VLDL) metabolism is linked to metabolic-associated fatty liver disease (MAFLD); however, the underlying cause remains unclear. The study shows that hepatic E3 ubiquitin ligase murine double minute 2 (MDM2) controls MAFLD by blocking TG-VLDL secretion. A remarkable upregulation of MDM2 is observed in the livers of human and mouse models with different levels of severity of MAFLD. Hepatocyte-specific deletion of MDM2 protects against high-fat high-cholesterol diet-induced hepatic steatosis and inflammation, accompanied by a significant elevation in TG-VLDL secretion. As an E3 ubiquitin ligase, MDM2 targets apolipoprotein B (ApoB) for proteasomal degradation through direct protein-protein interaction, which leads to reduced TG-VLDL secretion in hepatocytes. Pharmacological blockage of the MDM2-ApoB interaction alleviates dietary-induced hepatic steatohepatitis and fibrosis by inducing hepatic ApoB expression and subsequent TG-VLDL secretion. The effect of MDM2 on VLDL metabolism is p53-independent. Collectively, these findings suggest that MDM2 acts as a negative regulator of hepatic ApoB levels and TG-VLDL secretion in MAFLD. Inhibition of the MDM2-ApoB interaction may represent a potential therapeutic approach for MAFLD treatment.


Assuntos
Apolipoproteínas B , Fígado Gorduroso , Lipoproteínas VLDL , Fígado , Obesidade , Proteínas Proto-Oncogênicas c-mdm2 , Triglicerídeos , Animais , Apolipoproteínas B/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Humanos , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/complicações , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Triglicerídeos/metabolismo
12.
Biosci Rep ; 42(3)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35211733

RESUMO

The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles' heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.


Assuntos
COVID-19 , Tecido Adiposo/patologia , Tecido Adiposo Branco/patologia , Humanos , Obesidade/genética , Obesidade/patologia , SARS-CoV-2
13.
Sci Adv ; 7(50): eabl4024, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878840

RESUMO

Mitochondrial uncoupling protein 1 (UCP1) is the hallmark of brown adipocytes responsible for cold- and diet-induced thermogenesis. Here, we report a previously unidentified role of UCP1 in maintaining vascular health through its anti-inflammatory actions possibly in perivascular adipose tissue. UCP1 deficiency exacerbates dietary obesity-induced endothelial dysfunction, vascular inflammation, and atherogenesis in mice, which was not rectified by reconstitution of UCP1 in interscapular brown adipose tissue. Mechanistically, lack of UCP1 augments mitochondrial membrane potential and mitochondrial superoxide, leading to hyperactivation of the NLRP3-inflammasome and caspase-1­mediated maturation of interleukin-1ß (IL-1ß). UCP1 deficiency­evoked deterioration of vascular dysfunction and atherogenesis is reversed by IL-1ß neutralization or a chemical mitochondrial uncoupler. Furthermore, UCP1 knockin pigs (which lack endogenous UCP1) are refractory to vascular inflammation and coronary atherosclerosis. Thus, UCP1 acts as a gatekeeper to prevent NLRP3 inflammasome activation and IL-1ß production in the vasculature, thereby conferring a protective effect against cardiovascular diseases.

14.
Diabetes ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34957498

RESUMO

BACKGROUND & AIMS: Hepatosteatosis, defined as excessive intrahepatic lipid accumulation, represents the first step of NAFLD. When combined with additional cellular stress, this benign status progresses to local and systemic pathological conditions such as NASH and insulin resistance. However, the molecular events directly caused by hepatic lipid build-up, in terms of its impact on liver biology and peripheral organs, remain unclear. Carnitine palmitoyltransferase 1A (CPT1A) is the rate limiting enzyme for long chain fatty acid beta-oxidation in the liver. Here we utilise hepatocyte-specific Cpt1a knockout (LKO) mice to investigate the physiological consequences of abolishing hepatic long chain fatty acid metabolism. APPROACH & RESULTS: Compared to the wild-type (WT) littermates, high fat diet (HFD)-fed LKO mice displayed more severe hepatosteatosis but were otherwise protected against diet-induced weight gain, insulin resistance, hepatic ER stress, inflammation and damage. Interestingly, increased energy expenditure was observed in LKO mice, accompanied by enhanced adipose tissue browning. RNAseq analysis revealed that the peroxisome proliferator activator alpha (PPARα)- fibroblast growth factor 21 (FGF21) axis was activated in liver of LKO mice. Importantly, antibody-mediated neutralization of FGF21 abolished the healthier metabolic phenotype and adipose browning in LKO mice, indicating that the elevation of FGF21 contributes to the improved liver pathology and adipose browning in HFD-treated LKO mice. CONCLUSIONS: Liver with deficient CPT1A expression adopts a healthy steatotic status that protects against HFD-evoked liver damage and potentiates adipose browning in an FGF21-dependent manner. Inhibition of hepatic CPT1A may serve as a viable strategy for the treatment of obesity and NAFLD.

15.
Diabetes ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675003

RESUMO

BACKGROUND & AIMS: Hepatosteatosis, defined as excessive intrahepatic lipid accumulation, represents the first step of NAFLD. When combined with additional cellular stress, this benign status progresses to local and systemic pathological conditions such as NASH and insulin resistance. However, the molecular events directly caused by hepatic lipid build-up, in terms of its impact on liver biology and peripheral organs, remain unclear. Carnitine palmitoyltransferase 1A (CPT1A) is the rate limiting enzyme for long chain fatty acid beta-oxidation in the liver. Here we utilise hepatocyte-specific Cpt1a knockout (LKO) mice to investigate the physiological consequences of abolishing hepatic long chain fatty acid metabolism. APPROACH & RESULTS: Compared to the wild-type (WT) littermates, high fat diet (HFD)-fed LKO mice displayed more severe hepatosteatosis but were otherwise protected against diet-induced weight gain, insulin resistance, hepatic ER stress, inflammation and damage. Interestingly, increased energy expenditure was observed in LKO mice, accompanied by enhanced adipose tissue browning. RNAseq analysis revealed that the peroxisome proliferator activator alpha (PPARα)- fibroblast growth factor 21 (FGF21) axis was activated in liver of LKO mice. Importantly, antibody-mediated neutralization of FGF21 abolished the healthier metabolic phenotype and adipose browning in LKO mice, indicating that the elevation of FGF21 contributes to the improved liver pathology and adipose browning in HFD-treated LKO mice. CONCLUSIONS: Liver with deficient CPT1A expression adopts a healthy steatotic status that protects against HFD-evoked liver damage and potentiates adipose browning in an FGF21-dependent manner. Inhibition of hepatic CPT1A may serve as a viable strategy for the treatment of obesity and NAFLD.

16.
J Vis Exp ; (173)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279507

RESUMO

Brown and beige adipocytes are now recognized as potential therapeutic targets for obesity and metabolic syndromes. Non-invasive molecular imaging methods are essential to provide critical insights into these thermogenic adipose depots. Here, the protocol presents a PET/MR imaging-based method to evaluate the activity of brown and beige adipocytes in mouse interscapular brown adipose tissue (iBAT) and inguinal subcutaneous white adipose tissue (iWAT). Visualization and quantification of the thermogenic adipose depots were achieved using [18F]FDG, the non-metabolizable glucose analog, as the radiotracer, when combined with the precise anatomical information provided by MR imaging. The PET/MR imaging was conducted 7 days after cold acclimation and quantitation of [18F]FDG signal in different adipose depots was conducted to assess the relative mobilization of thermogenic adipose tissues. Removal of iBAT substantially increased cold-evoked [18F]FDG uptake in iWAT of the mice.


Assuntos
Tecido Adiposo Bege , Fluordesoxiglucose F18 , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Branco , Animais , Imageamento por Ressonância Magnética , Camundongos , Tomografia por Emissão de Pósitrons
17.
Biochem Biophys Res Commun ; 545: 189-194, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33561654

RESUMO

The prevalence of obesity is increasing globally and is associated with many metabolic disorders, such as type 2 diabetes and cardiovascular diseases. In recent years, a number of studies suggest that promotion of white adipose browning represents a promising strategy to combat obesity and its related metabolic disorders. The aim of this study was to identify compounds that induce adipocyte browning and elucidate their mechanism of action. Among the 500 natural compounds screened, a small molecule named Rutaecarpine, was identified as a positive regulator of adipocyte browning both in vitro and in vivo. KEGG pathway analysis from RNA-seq data suggested that the AMPK signaling pathway was regulated by Rutaecarpine, which was validated by Western blot analysis. Furthermore, inhibition of AMPK signaling mitigated the browning effect of Rutaecaripine. The effect of Rutaecaripine on adipocyte browning was also abolished upon deletion of Prdm16, a downstream target of AMPK pathway. In collusion, Rutaecarpine is a potent chemical agent to induce adipocyte browning and may serve as a potential drug candidate to treat obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Alcaloides Indólicos/farmacologia , Quinazolinas/farmacologia , Fatores de Transcrição/metabolismo , Adipócitos Bege/citologia , Adipócitos Brancos/citologia , Animais , Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Termogênese/fisiologia
18.
J Diabetes Res ; 2020: 9519072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377527

RESUMO

AIM: There are increasing evidence demonstrating that neutrophil-mediated inflammation plays a role in the etiology of type 2 diabetes. However, the molecular mechanisms by which neutrophils contribute to type 2 diabetes remain largely unknown. The aim of the present work was to identify possible changes in circulating neutrophils to better elucidate neutrophil involvement in human type 2 diabetes. METHODS: Patients newly diagnosed with type 2 diabetes (n = 5) and age- and sex-matched healthy controls (n = 5) were recruited. Neutrophils were purified from type 2 diabetes patients and controls, and RNA sequencing (RNA-seq) was used for comprehensive transcriptome analysis. Differentially expressed genes (DEGs) were screened, and Gene Ontology (GO) and KEGG pathway enrichment analyses were performed. Real-time polymerase chain reaction (qPCR) was used for validation in external samples of type 2 diabetes patients (n = 8) and healthy controls (n = 8). RESULTS: Gene expression analysis showed that, compared with neutrophils from healthy controls, there were 1990 upregulated DEGs and 1314 downregulated DEGs in neutrophils from type 2 diabetes patients. GO analysis demonstrated that the DEGs were mainly involved in myeloid leukocyte activation, T cell activation, adaptive immunity, and cytokine production. The top 20 enriched KEGG pathways included the cytokine-cytokine receptor interaction pathway, NF-κB signaling pathway, cell adhesion molecules, and chemokine signaling pathway. Furthermore, qPCR of genes related to neutrophil activation revealed that the expression of SELL, SELP, CXCR1, and S100A8 was significantly increased in neutrophils from type 2 diabetes patients compared with that in neutrophils from controls. CONCLUSIONS: Our study reveals an abnormal activation of circulating neutrophils at the transcriptome level in type 2 diabetes patients. These findings suggest a potential involvement of neutrophil dysfunction in the pathologic process of type 2 diabetes and provide insight into potential therapeutic targets for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Neutrófilos/metabolismo , Adulto , Diabetes Mellitus Tipo 2/genética , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Transcriptoma
19.
Mol Metab ; 28: 48-57, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31352005

RESUMO

OBJECTIVE: The T-box gene Tbx15 is abundantly expressed in adipose tissues, especially subcutaneous and brown fat. Although its expression is correlated with obesity, its precise biological role in adipose tissue is poorly understood in vivo. Here we investigated the function of Tbx15 in brown adipose thermogenesis and white adipose browning in vivo. METHODS: In the present study, we generated adipose-specific Tbx15 knockout (AKO) mice by crossing Tbx15 floxed mice with adiponectin-Cre mice to delineate Tbx15 function in adipose tissues. We systematically investigated the influence of Tbx15 on brown adipose thermogenesis and white adipose browning in mice, as well as the possible underlying molecular mechanism. RESULTS: Upon cold exposure, adipocyte browning in inguinal adipose tissue was significantly impaired in Tbx15 AKO mice. Furthermore, ablation of Tbx15 blocked adipocyte browning induced by ß3 adrenergic agonist CL 316243, which did not appear to alter the expression of Tbx15. Analysis of DNA binding sites using chromatin-immunoprecipitation (ChIP) revealed that TBX15 bound directly to a key region in the Prdm16 promoter, indicating it regulates transcription of Prdm16, the master gene for adipocyte thermogenesis and browning. Compared to control mice, Tbx15 AKO mice displayed increased body weight gain and decreased whole body energy expenditure in response to high fat diets. CONCLUSION: Taken together, these findings suggest that Tbx15 regulates adipocyte browning and might be a potential target for the treatment of obesity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética
20.
Life Sci ; 222: 117-124, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708100

RESUMO

Obesity is caused by energy imbalance and accompanied by adipocyte hypertrophy and hyperplasia. Therefore, both enhancement of adipocyte energy expenditure and inhibition of adipogenesis are viable ways to combat obesity. Using the Ucp1-2A-luciferase reporter animal model previously reported by us as a screening platform, a chemical compound Linifanib was identified as a potent inducer of UCP1 expression in primary inguinal adipocytes in vitro and in vivo. Signal pathway analyses showed that Linifanib promoted adipocyte browning by attenuating STAT3 phosphorylation. The effects of Linifanib on adipocyte browning were blocked by the compound, SD19, which activates the STAT3 signaling cascade. Linifanib also inhibited adipocyte differentiation, by blocking mitotic clonal expansion, which could be rescued by STAT3 activator. Taken together, our results indicate that Linifanib might serve as a potential drug for the treatment of obesity.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Indazóis/farmacologia , Compostos de Fenilureia/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Células 3T3-L1 , Adipócitos Marrons/metabolismo , Adipogenia/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Camundongos Transgênicos , Distribuição Aleatória , Fator de Transcrição STAT3/metabolismo , Smegmamorpha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...