Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 37(27): 3580-3587, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31122859

RESUMO

Dengue virus (DENV) infection is a global health threat with the potential to affect at least 3.6 billion people living in areas of risk. No specific curative treatments against dengue disease are available and vaccines are currently the only way to prevent the disease. The tetravalent dengue vaccine developed by Sanofi Pasteur has demonstrated significant efficacy in phase III studies and is now licensed in several countries for the prevention of disease in dengue-seropositives over 9 years of age. The vaccine is composed of four recombinant, live, attenuated vaccines (CYD 1-4) based on a yellow fever vaccine 17D (YFV 17D) backbone, each expressing the pre-membrane (prM) and envelope (E) genes of one of the four DENV serotypes. Virus maturity could impact the biological activity of the vaccine viruses. To address this question, the maturity of the four vaccine viruses used in phase III clinical studies was assessed by two complementary techniques: mass spectrometry (MS) and cryo-electron microscopy (cryoEM). MS assessed viral maturity at the molecular level by quantifying specifically the prM, and M proteins. CryoEM provided information at the particle level, allowing visualizing the different phenotypes of viral particles: spiky (immature), smooth/bumpy (mature), and mixed (partially mature). Results of the two assays used in this study show that all four CYD dengue vaccine viruses present in lots used in phase III efficacy trials, display in the majority a mature phenotype.


Assuntos
Microscopia Crioeletrônica/métodos , Vacinas contra Dengue , Vírus da Dengue/crescimento & desenvolvimento , Espectrometria de Massas/métodos , Tecnologia Farmacêutica/métodos , Vírus da Dengue/química , Vírus da Dengue/ultraestrutura , Humanos , Vacinas Atenuadas , Vacinas Sintéticas
2.
Proteomics ; 15(19): 3320-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26205729

RESUMO

Infection by dengue flavivirus is transmitted by mosquitoes and affects tens to hundreds of millions people around the world each year. Four serotypes have been described, all of which cause similar disease. Currently, there no approved vaccines or specific therapeutics for dengue, although several vaccine prototypes are in different stages of clinical development. Among them, a chimeric vaccine, built from the replication machinery of the yellow fever 17D virus, has shown promising results in phase III trials. Accurate quantitation of expressed viral particles in alive attenuated viral antigen vaccine is essential and determination of infectious titer is usually the method of choice. The current paper describes an alternative or orthogonal strategy, namely, a multiplexed and absolute assay of four proteins of the chimera yellow fever/dengue serotype 4 virus using targeted MS in SRM mode. Over 1 month, variability of the assay using a partially purified Vero cell extract was between 8 and 17%, and accuracy was between 80 and 120%. In addition, the assay was linear between 6.25 and 200 nmol/L and could therefore be used in the near future to quantify dengue virus type 4 during production and purification from Vero cells.


Assuntos
Vírus da Dengue/imunologia , Espectrometria de Massas , Proteínas Virais/análise , Vacinas Virais/análise , Animais , Chlorocebus aethiops , Vacinas Atenuadas/análise , Células Vero , Proteínas Virais/imunologia , Vírus da Febre Amarela/imunologia
3.
Methods Mol Biol ; 988: 93-113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23475716

RESUMO

Antibodies and related products represent one of the fastest growing areas of new drug development within the pharmaceutical industry. Monoclonal antibodies (mAbs) undergo many posttranslational modifications (PTMs) that must be extensively characterized. Here we described a rapid mass spectrometry (MS) method for the characterization of cetuximab glycosylation. The reported analytical technique is based on the use of a cystein protease, immunoglobulin-degrading enzyme of Streptococcus pyogenes that allows a fast limited proteolysis of the mAb with low material consumption. The resulting large fragments are analyzed by ultrahigh-performance liquid chromatography combined to an electrospray ionization mass spectrometer and a time-of-flight analyzer (ESI-TOF). Cetuximab is a potent chimeric mouse/human antibody worldwide approved for the treatment of colon and head and neck cancers. This antibody, produced by SP2/0 murine myeloma cells, is N-glycosylated both in the Fc and Fab moieties, which have been shown to impact on safety and PK/PD and considered as a critical quality attribute. The method can also be applied for biosimilars, biobetters, and next-generation antibodies and Fc-fusion proteins.


Assuntos
Anticorpos Monoclonais Humanizados/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Humanizados/isolamento & purificação , Soluções Tampão , Configuração de Carboidratos , Sequência de Carboidratos , Cetuximab , Cromatografia Líquida de Alta Pressão , Ditiotreitol/química , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas , Camundongos , Dados de Sequência Molecular , Neuraminidase/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Polissacarídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , Proteólise , Substâncias Redutoras/química
4.
J Mass Spectrom ; 47(10): 1353-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23019168

RESUMO

Absolute protein quantification, i.e. determining protein concentrations in biological samples, is essential to our understanding of biological and physiopathological phenomena. Protein quantification methods based on the use of antibodies are very effective and widely used. However, over the last ten years, absolute protein quantification by mass spectrometry has attracted considerable interest, particularly for the study of systems biology and as part of biomarker development. This interest is mainly linked to the high multiplexing capacity of MS analysis, and to the availability of stable-isotope-labelled standards for quantification. This article describes the details of how to produce, control the quality and use a specific type of standard: Protein Standard Absolute Quantification (PSAQ™) standards. These standards are whole isotopically labelled proteins, analogues of the proteins to be assayed. PSAQ standards can be added early during sample treatment, thus they can correct for protein losses during sample prefractionation and for incomplete sample digestion. Because of this, quantification of target proteins is very accurate and precise using these standards. To illustrate the advantages of the PSAQ method, and to contribute to the increase in its use, selected applications in the biomedical field are detailed here.


Assuntos
Testes de Química Clínica/normas , Espectrometria de Massas/normas , Proteínas/análise , Proteômica/normas , Sequência de Aminoácidos , Soluções Tampão , Testes de Química Clínica/métodos , Enterotoxinas/análise , Enterotoxinas/química , Conteúdo Gastrointestinal/química , Humanos , Concentração de Íons de Hidrogênio , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/química , Isótopos/química , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Isoformas de Proteínas , Estabilidade Proteica , Proteínas/química , Proteômica/métodos , Padrões de Referência , Infecções Estafilocócicas/microbiologia , Troponina I/análise , Troponina I/química
5.
Proteomics ; 12(8): 1217-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22577023

RESUMO

Absolute quantification of proteins using isotope dilution mass spectrometry requires the selection of proteotypic peptides. When choosing these peptides, a certain number of rules must be respected. Several of these were established to safeguard against quantification errors resulting from the isotopically labeled standard peptides not behaving in the same way as the peptides to be quantified. Of all absolute quantification methods using isotope dilution, Protein Standard for Absolute Quantification (PSAQ(TM) ) offers the maximal protein sequence coverage. In the present study, we show that the PSAQ method presents a previously unreported advantage for protein quantification as it makes use of Met/Cys-containing peptides and peptides-containing miscleavages in addition to proteotypic peptides. By increasing the total number of peptides that can be considered, robustness of quantification is improved, paving the way for a facilitated quantification of low abundant and/or low-molecular-weight proteins.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteômica/métodos , Motivos de Aminoácidos , Arginina/química , Cisteína/química , Humanos , Marcação por Isótopo , Lisina/química , Metionina/química , Dados de Sequência Molecular , Peptídeos/sangue , Proteólise , Técnica de Diluição de Radioisótopos , Padrões de Referência , Tripsina/química
6.
Mol Cell Proteomics ; 11(2): M111.008235, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22080464

RESUMO

Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/análise , Doença das Coronárias/sangue , Creatina Quinase Forma MB/sangue , L-Lactato Desidrogenase/sangue , Infarto do Miocárdio/sangue , Mioglobina/sangue , Troponina I/sangue , Estudos de Casos e Controles , Cromatografia Líquida , Doença das Coronárias/diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , Isoenzimas/sangue , Espectrometria de Massas , Infarto do Miocárdio/diagnóstico
7.
J Proteome Res ; 8(5): 2484-94, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19271733

RESUMO

Various attempts to detect matrix metalloproteinase (MMP) active forms from complex proteomes, based on the use of specific photoactivatable affinity probes, have up to now failed. To overcome this failure, an affinity approach has been evaluated as an alternative to the photoaffinity one. For this purpose, two probes were synthesized to interact specifically with the active site of MMPs and allow isolation of MMP/probe complexes on magnetic beads through a biotin linker. Using phosphinic peptide chemistry, we prepared an affinity probe displaying picomolar potency toward several MMPs, and a related photoaffinity probe incorporating a photoactivatable azido group exhibiting subnanomolar affinity toward these targets. By a combination of silver-staining detection and MALDI peptide mass fingerprints, a systematic comparison was made of both strategies in terms of hMMP-12 and hMMP-8 recovery and identification when present in mixtures of different complexity. The results obtained show that the affinity protocol is superior to the photoaffinity strategy in terms of quantity of captured MMPs and number of MMP tryptic fragments detected in MALDI-MS. The specificity and efficiency of the affinity capture protocol developed in this study allowed easy, fast, and unambiguous detection by MALDI-MS of three hMMPs (2, 8, and 12), from a single affinity capture experiment, when added (10-36 ng of MMPs) to a tumor extract (10 microg). Thus, the tools and approaches reported should enable us to progress in the detection of endogenous active forms of MMPs in complex proteomes, an important objective with many diagnostic applications.


Assuntos
Metaloproteinases da Matriz/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Marcadores de Afinidade/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Humanos , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/química , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinases da Matriz/química , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Estrutura Molecular , Marcadores de Fotoafinidade/química , Proteoma/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...