Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(42): 47931-47940, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36222192

RESUMO

Using multinuclear copper iodide complexes as cross-linking agents in a polyurethane matrix, original photoluminescent stimuli-responsive materials were synthesized. The intrinsic photoluminescence properties of the covalently incorporated copper iodide complexes are thus transferred to the materials while retaining the beneficial characteristics of the polymer host. The transparent materials exhibit room-temperature phosphorescence with emission switching properties by displaying luminescence thermochromism and solvatochromism. The luminescence thermochromism is characterized by a change in the wavelength and intensity of the emission with temperature, and the vapochromic effect presents a contrasted response of extinction or exaltation according to the nature of the solvent of exposure. By combining the luminescence characteristics of photoactive copper iodide complexes with the ease of polymer processing, the application of these luminescent materials as phosphors in LED (light-emitting diode) devices was also demonstrated. The present study shows that the use of copper iodide complexes as cross-linkers in polymeric materials is a relevant strategy to design materials with enhanced functionalities in addition to their low cost and sustainable characteristics.

2.
Inorg Chem ; 59(18): 13607-13620, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909432

RESUMO

In the field of stimuli-responsive luminescent materials, mechanochromic compounds exhibiting reversible emission color changes activated by mechanical stimulation present appealing perspectives in sensor applications. The mechanochromic luminescence properties of the molecular cubane copper iodide cluster [Cu4I4[PPh2(C6H4-CH2OH)]4] (1) are reported in this study. This compound can form upon melting an amorphous phase, giving an unprecedented opportunity to investigate the mechanochromism phenomenon. Because the mechanically induced crystalline-to-amorphous transition is only partial, the completely amorphous phase represents the ultimate state of the mechanically altered phase. Furthermore, the studied compound could form two different crystalline polymorphs, namely, [Cu4I4[PPh2(C6H4-CH2OH)]4]·C2H3N (1·CH3CN) and [Cu4I4[PPh2(C6H4-CH2OH)]4]·3C4H8O (1·THF), allowing the establishment of straightforward structure-property relationships. Photophysical and structural characterizations of 1 in different states were performed, and the experimental data were supported by theoretical investigations. Solid-state NMR analysis permitted quantification of the amorphous part in the mechanically altered phase. IR and Raman analysis enabled identification of the spectroscopic signatures of each state. Density functional theory calculations led to assignment of both the NMR characteristics and the vibrational bands. Rationalization of the photoluminescence properties was also conducted, with simulation of the phosphorescence spectra allowing an accurate interpretation of the thermochromic luminescence properties of this family of compounds. The combined study of crystalline polymorphism and the amorphous state allowed us to get deeper into the mechanochromism mechanism that implies changes of the [Cu4I4] cluster core geometry. Through the combination of multistimuli-responsive properties, copper iodide clusters constitute an appealing class of compounds toward original functional materials.

3.
Dalton Trans ; 48(22): 7899-7909, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31086883

RESUMO

The development of luminescent mechanochromic materials depends mainly on the possibility to rationally design them with the desired properties. Molecular copper iodide clusters constitute an unprecedented family of compounds exhibiting great changes of their luminescence properties upon mechanical stress. From previous studies, the mechanochromic properties of cubane [Cu4I4L4] (L = organic ligand) clusters have been attributed to modifications of cuprophilic interactions induced by mechanical solicitation. In this study, we ascertain our hypothesis by choosing to study the luminescence mechanochromism of a [Cu4I4(PPh3)4] cluster which presents two crystalline polymorphs exhibiting strikingly different Cu-Cu bond lengths. As forecasted, only one of these two polymorphs exhibits mechanochromic properties. Structural and optical characterization methods are reported along with structural characterization under controlled pressure allowing a precise analysis of the structural changes occurring under mechanical stress. In addition to confirming our mechanism based on enhancement of cuprophilic interactions under pressure, this study demonstrates the possibility of prediction of mechanochromic properties in the family of copper iodide compounds that constitutes a step further toward the rational design of stimuli-responsive materials.

4.
Inorg Chem ; 57(8): 4328-4339, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29620359

RESUMO

Luminescent materials based on copper complexes are currently receiving increasing attention because of their rich photophysical properties, opening a wide field of applications. The copper iodide clusters formulated [Cu4I4L4] (L = ligand), are particularly relevant for the development of multifunctional materials based on their luminescence stimuli-responsive properties. In this context, controlling and modulating their photophysical properties is crucial and this can only be achieved by thorough understanding of the origin of the optical properties. We thus report here, the comparative study of a series of cubane copper iodide clusters coordinated by different phosphine ligands, with the goal of analyzing the effect of the ligands nature on the photoluminescence properties. The synthesis, structural, and photophysical characterizations along with theoretical investigations of copper iodide clusters with ligands presenting different electronic properties, are described. A method to simplify the analysis of the 31P solid-state NMR spectra is also reported. While clusters with electron-donating groups present classical luminescence properties, the cluster bearing strong electron-withdrawing substituents exhibits original behavior demonstrating a clear influence of the ligands properties. In particular, the electron-withdrawing character induces a decrease in energy of the unoccupied molecular orbitals, that consequently impacts the emission properties. The modification of the luminescence thermochromic properties of the clusters are supported by density functional theory (DFT) calculations. This study demonstrates that the control of the luminescence properties of these compounds can be achieved through modification of the coordinated ligands, nevertheless the role of the crystal packing should not be underestimated.

5.
Inorg Chem ; 56(20): 12379-12388, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28949130

RESUMO

Luminescent mechanochromic materials exhibiting reversible changes of their emissive properties in response to external mechanical forces are currently emerging as an important class of stimuli-responsive materials because of promising technological applications. Here, we report on the luminescence mechanochromic properties of a [Cu4I4(PPh3)4] copper iodide cluster presenting a chair geometry, being an isomer of the most common cubane form. This molecular cluster formulated [Cu4I4(PPh3)4]·2CHCl3 (1) exhibits a highly contrasted emission response to manual grinding, and, interestingly, the optical properties of the ground phase present striking similarities with those of the cubane isomer. In order to understand the underlying mechanism, a comparison with two related compounds has been conducted. The first one is a pseudopolymorph of 1 formulated as [Cu4I4(PPh3)4]·CH2Cl2 (2), which exhibits luminescent mechanochromic properties as well. The other one is also a chair compound but with a slightly different phosphine ligand, namely, [Cu4I4(PPh2C6H4CO2H)4] (3), lacking mechanochromic properties. Structural and optical characterizations of the clusters have been analyzed in light of previous electronic structure calculations. The results suggest an unpreceded mechanochromism phenomenon based on a solid-state chair → cubane isomer conversion. This study shows that polynuclear copper iodide compounds are particularly relevant for the development of luminescent mechanochromic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...