Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-993581

RESUMO

Objective:To establish standard spatial brain template and ROIs template of 11C-methyl- N-2β-carbomethoxy-3β-(4-fluorophenyl)tropane (CFT) PET images for automated quantitative analysis of dopamine transporter (DAT) distribution. Methods:From May 2014 to December 2015, 11C-CFT PET and MRI T 1 brain images of 16 healthy volunteers (3 males, 13 females; age (63.3±6.9) years) from Huashan Hospital, Fudan University were co-registered and smoothed using statistical parametric mapping(SPM)5 software based on MATLAB to create a standard spatial brain template. The ROIs template was established by ScAnVp procedures. These templates were clinically verified by using 11C-CFT PET images of 37 healthy volunteers (23 males, 14 females; age (61.7±7.1) years), 32 Parkinson′s disease (PD) patients (20 males, 12 females; age (61.1±5.4) years), 10 multiple system atrophy with predominant parkinsonism (MSA-P) patients (7 males, 3 females; age (60.8±7.1) years) and 10 progressive supranuclear palsy (PSP) patients (5 males, 5 females; age (58.4±6.1) years) from Huashan Hospital, Fudan University between January 2014 and March 2019. One-way analysis of variance was used to analyze data. Results:Based on the 11C-CFT PET images and MRI T 1 images of healthy volunteers, a standard spatial brain template for normalization of 11C-CFT PET images was created. The ROIs template was established including seven regions: bilateral caudate, anterior putamen, posterior putamen (along the long axis) and the occipital cortex. The ROIs template was accurately aligned in each verification group. The normal reference values of semi-quantitative DAT distribution in caudate, anterior putamen and posterior putamen were obtained (1.84±0.13, 2.18±0.16, 1.77±0.11). The semi-quantitative values of 11C-CFT uptake in each ROI in patients were significantly lower than those in healthy volunteers ( F values: 49.79-283.83, all P<0.05). Conclusion:The established brain templates with accurate spatial alignment for 11C-CFT image analysis can provide foundational tools for the application of 11C-CFT PET imaging in clinical practice and scientific research.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-957186

RESUMO

Due to the availability of 18F-FDG in PET centers, this article aims to advocate and promote the standardization of 18F-FDG PET brain imaging in dementia in order to improve the reliability, repeatability and comparison of the imaging process and results. It is also provided to guide the PET imaging operation standard and to give suggestions on image interpretation.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-957180

RESUMO

Objective:To explore the potential application of combining 18F-FDG PET imaging and radiomics in the diagnosis of Parkinson′s disease (PD) and atypical parkinsonian syndromes (APS). Methods:A total of 154 subjects of two cohorts (training set and validation set) were enrolled from Huashan Hospital, Fudan University from March 2015 to August 2020 in this cross-sectional study, including 40 normal controls (NC; 23 males and 17 females, age: (60.2±10.5) years), 40 PD patients (20 males and 20 females, age: (64.7±6.3) years), 40 progressive supranuclear palsy (PSP) patients (20 males and 20 females, age: (64.1±5.9) years), and 34 multiple system atrophy (MSA) patients (19 males and 15 females, age: (65.0±9.2) years). 18F-FDG PET images and clinical scale were selected, and one-way analysis of variance was used to compare differences of clinical scale among groups. Radiomic features extraction and feature selection were carried out. Two and three classification models were constructed based on logistic regression, and the ROC curves of clinical model, radiomics model and combined model were calculated. Independent classification tests were conducted 100 times with 5-fold cross validation in two cohorts. Results:There were significant differences in the scores of unified PD Rating Scale (UPDRS) and Hoehn-Yahr rating scale (H&Y) among different groups in cohort 1 and cohort 2 respectively ( F values: 4.83-17.95, all P<0.05). A total of 2 444 imaging features were extracted from each subject, and after features selection, 15 features for classification were obtained. In the two classification experiment, the AUCs of the three models in binary classification of PD/MSA/PSP/NC group were 0.56-0.68, 0.74-0.93 and 0.72-0.93, respectively. The classification effects of the radiomics model were significantly better than those of the clinical model ( z values: 1.71-2.85, all P<0.05). In the three classification experiment, the sensitivity of the radiomics model reached 80%, 80% and 77% for PD, MSA and PSP, respectively. Conclusion:18F-FDG imaging combined with radiomics has potential in the diagnosis of PD and APS.

4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-957176

RESUMO

Multi-centre clinical trials on PET/CT brain imaging are complex to organize and require careful co-ordination and management. This article describes considerations, which are necessary when designing and starting a multi-centre clinical trial on PET/CT brain imaging, based on guidelines and multi-center clinical brain imaging studies, providing references for further studies.

5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-755297

RESUMO

Objective To study the effect of short-term treatment of subthalamic nucleus ( STN ) deep brain stimulation (DBS) on cerebral glucose metabolism in patients with Parkinson's disease (PD) and its relationship with the change of brain motor-related nerve pathways. Methods Five patients ( 2 males, 3 females;age:(63.6±11.8) years) with PD who underwent STN DBS between January 2014 and December 2018 were enrolled in this study. All patients underwent 18F-fluorodeoxyglucose (FDG) PET in "DBS-off"state before and 3 months after operation. Quantitative expression of PD-related metabolic pattern (PDRP) were calculated by scaled subprofile model/principal component analysis ( SSM/PCA) on PET images. Brain regions with changes of glucose metabolism after DBS were located by statistical parametric mapping (SPM) paired t test. Results Compared with pre-operation, PDRP expression (5.1±1.3 vs 2.9±1.8) and unified Parkinson's disease rating scale (UPDRS) motor score (50.2±8.2 vs 28.0±5.4) of PD patients were significantly decreased 3 months after STN DBS (t values:6.17 and 3.88, both P<0.05). After DBS, the glucose metabolism of bilateral globus pallidus/putamen, caudate nucleus, thalamus, insula, pons and cer-ebellum decreased, while the glucose metabolism of bilateral prefrontal motor area and parietooccipital lobe increased ( t=3.75, P<0.01) . Conclusions Short-term STN DBS therapy can inhibit the cortico-striatum-pallidum-hypothalamus-cortex motor loop, which is abnormally excitable in the brain of PD. PDRP, as an imaging characterization of the regulation of this loop, is expected to become an imaging marker for monito-ring the treatment of PD.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-755269

RESUMO

Objective To investigate the value of statistical parametric mapping (SPM) analysis of 18F-fluorodeoxyglucose (FDG) PET imaging in the differential diagnosis of Parkinsonism in single-case level.Methods SPM software was used to retrospectively analyze the 18F-FDG PET images of 160 patients (104males,56 females,age:30-82 years) who were suspected with Parkinsonism at baseline and were clinical confirmed by follow-up from April 2010 to December 2017.18F-FDG PET images of patients was compared with those of age-matched healthy controls in single-case level using two-sample t test in SPM software to obtain the imaging diagnosis.By comparing imaging diagnosis with the final clinical diagnosis,the diagnostic accuracy of SPM in the overall cohort as well as the early subcohort (duration of disease less than 2 years (56 males,22 females,age:50-82 years)) were calculated respectively.Results Among 160 patients with Parkinsonism,146(91.2%) had the same 18F-FDG PET diagnosis as their final clinical diagnosis.The diagnostic sensitivity for Parkinson's disease (PD),multiple system atrophy (MSA),progressive supranuclear palsy (PSP) and cortical basal ganglia degeneration (CBD) were 93.5% (86/92),92.3% (24/26),84.0%(21/25) and 15/17,respectively.The specificity were 95.6%(65/68),95.5%(128/134),96.3% (130/135) and 100%(143/143),respectively.In the early subcohort,the analysis also achieved similar differential diagnosis effectiveness(92.3%).Conclmion The single-case 18F-FDG PET imaging SPM analysis can be helpful in the early differential diagnosis of Parkinsonism effectively.

7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-797727

RESUMO

Objective@#To study the effect of short-term treatment of subthalamic nucleus (STN) deep brain stimulation (DBS) on cerebral glucose metabolism in patients with Parkinson′s disease (PD) and its relationship with the change of brain motor-related nerve pathways.@*Methods@#Five patients (2 males, 3 females; age: (63.6±11.8) years) with PD who underwent STN DBS between January 2014 and December 2018 were enrolled in this study. All patients underwent 18F-fluorodeoxyglucose (FDG) PET in " DBS-off" state before and 3 months after operation. Quantitative expression of PD-related metabolic pattern (PDRP) were calculated by scaled subprofile model/principal component analysis (SSM/PCA) on PET images. Brain regions with changes of glucose metabolism after DBS were located by statistical parametric mapping (SPM) paired t test.@*Results@#Compared with pre-operation, PDRP expression (5.1±1.3 vs 2.9±1.8) and unified Parkinson′s disease rating scale (UPDRS) motor score (50.2±8.2 vs 28.0±5.4) of PD patients were significantly decreased 3 months after STN DBS (t values: 6.17 and 3.88, both P<0.05). After DBS, the glucose metabolism of bilateral globus pallidus/putamen, caudate nucleus, thalamus, insula, pons and cerebellum decreased, while the glucose metabolism of bilateral prefrontal motor area and parietooccipital lobe increased (t=3.75, P<0.01).@*Conclusions@#Short-term STN DBS therapy can inhibit the cortico-striatum-pallidum-hypothalamus-cortex motor loop, which is abnormally excitable in the brain of PD. PDRP, as an imaging characterization of the regulation of this loop, is expected to become an imaging marker for monitoring the treatment of PD.

8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-805432

RESUMO

Objective@#To investigate the value of statistical parametric mapping (SPM) analysis of 18F-fluorodeoxyglucose (FDG) PET imaging in the differential diagnosis of Parkinsonism in single-case level.@*Methods@#SPM software was used to retrospectively analyze the 18F-FDG PET images of 160 patients (104 males, 56 females, age: 30-82 years) who were suspected with Parkinsonism at baseline and were clinical confirmed by follow-up from April 2010 to December 2017. 18F-FDG PET images of patients was compared with those of age-matched healthy controls in single-case level using two-sample t test in SPM software to obtain the imaging diagnosis. By comparing imaging diagnosis with the final clinical diagnosis, the diagnostic accuracy of SPM in the overall cohort as well as the early subcohort (duration of disease less than 2 years (56 males, 22 females, age: 50-82 years)) were calculated respectively.@*Results@#Among 160 patients with Parkinsonism, 146(91.2%) had the same 18F-FDG PET diagnosis as their final clinical diagnosis. The diagnostic sensitivity for Parkinson′s disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and cortical basal ganglia degeneration (CBD) were 93.5%(86/92), 92.3%(24/26), 84.0%(21/25) and 15/17, respectively. The specificity were 95.6%(65/68), 95.5%(128/134), 96.3%(130/135) and 100%(143/143), respectively. In the early subcohort, the analysis also achieved similar differential diagnosis effectiveness(92.3%).@*Conclusion@#The single-case 18F-FDG PET imaging SPM analysis can be helpful in the early differential diagnosis of Parkinsonism effectively.

9.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-760267

RESUMO

OBJECTIVE: To evaluate whether the combination of magnetic resonance spectroscopy (MRS) and 11C-methionine positron emission tomography (11C-MET PET) could increase accurate diagnostic sensitivity for non-enhancing supratentorial gliomas. MATERIALS AND METHODS: Between February 2012 and December 2017, 109 patients with non-enhanced supratentorial lesions on contrast-enhanced MRI were enrolled. Each patient underwent MRS and 11C-MET PET before treatment. A lesion was considered to be a glioma when either the MRS or 11C-MET PET results reached the diagnostic threshold. The radiological diagnosis was compared with the pathological diagnosis or medical diagnostic criteria. RESULTS: The sensitivity and specificity were 60.0% and 50.0% for MRS and 75.8% and 50.0% for 11C-MET PET, respectively. Upon combining the two modalities, the sensitivity and specificity of the imaging-based diagnosis prior to surgery reached 89.5% and 42.9%, respectively. Statistically significant differences in the sensitivities were observed between the combined and individual approaches (MRS alone, 89.5% vs. 60.0%, p < 0.001; 11C-MET PET alone, 89.5% vs. 75.8%, p = 0.001). However, no significant differences in specificity were observed between the combined and individual modalities. CONCLUSION: The combination of MRS and 11C-MET PET findings significantly increases accurate diagnostic sensitivity for non-enhancing supratentorial gliomas without significantly lowering the specificity. This finding suggests the potential of the combined MRS and 11C-MET PET approach in clinical applications.


Assuntos
Humanos , Diagnóstico , Elétrons , Glioma , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Metionina , Tomografia por Emissão de Pósitrons , Sensibilidade e Especificidade
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-708947

RESUMO

Central nervous system (CNS)diseases are complicated and the knowledge we get about them is very limited.PET plays an important role in the diagnosis of CNS diseases since it is noninvasive. Exploring the functional changes of the brain with PET has become a hot topic.The key of PET brain ima-ging is the molecular targeting probes.This review summarizes the research progress of CNS PET tracers on the basis of 2016 Society of Nuclear Medicine and Molecular Imaging (SNMMI)annual meeting.

11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-442729

RESUMO

Objective To find the optimal scanning time window and then set up the normal binding potentials (BPs) of 2β-carbomethoxy-3β-(4-fluorophenyl)-(N-11C-methyl) tropane (11C-CFT) DAT PET/CT imaging.Methods Thirty-one healthy volunteers (20 males,11 females,average age:(55.7±2.3) years),who all gave written informed consent,were divided into three age and gender-matched groups according to block randomization.Each group underwent static PET/CT scan in different time windows from 40-60 min,60-80 min to 80-100 min after 11C-CFT injection.To determine the best scanning time window,the ratios of caudate and putamen of all volunteers were analyzed using automatic ROI method (caudate (putamen)/parieto-occipital cotex-1) and compared by one-way analysis of variance and the least significant difference (LSD) t test.The ratio of the same area between different age-groups and gender-groups was compared with independent two-sample t test.Results Ratios of left caudate (2.08±0.06,1.75±0.07and 1.77±0.12 respectively),right anterior putamen (2.33±0.06,1.95±0.09 and 2.08±0.12 respectively)and bilateral posterior putamen (left:1.88±0.66,1.55±0.88 and 1.72±0.09; right:1.98±0.07,1.61±0.09and 1.69±0.12) were all different in three time windows (F=3.588,3.345,4.479,3.557,all P<0.05).There were significant differences in ratios of left caudate,right anterior and bilateral posterior putamen between 40-60 min and the 60-80 min (all P<0.05),as well as the ratios of left caudate between 40-60 min and the 80-100 min group (P<0.05).While no valid differences in ratios of those areas were shown between the groups of 60-80 min and 80-100 min scanning time window (all P>0.05).DAT densities in right and left side of caudate,anterior and posterior putamen were significantly lower in the group over 60 years of age than those under 60 years (t=-3.260,-3.090,-3.270,-3.190,-2.270,-3.110,all P<0.05),but were not different between gender-groups (t =0.367,0.522,0.144,0.524,0.166,0.004,all P>0.05).Conclusions Sixty min after injection of 11C-CFT,the BPs achieve stable stage,so the best scanning time window of 11C-CFT DAT PET imaging was 60-80 min after injection.Identification of normal DAT distribution and understanding of normal BPs of 11C-CFF are necessary before its clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...