Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Antimicrob Agents Chemother ; : e0020824, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162528

RESUMO

We characterized the molecular determinants of meropenem-vaborbactam (MV) non-susceptibility among non-metallo-ß-lactamase-producing KPC-Klebsiella pneumoniae (KPC-KP). Whole-genome sequencing was performed to identify mutations associated with MV non-susceptibility. Isolates with elevated MV MICs were found to have mutations encoding truncated or altered OmpK36 porins and increased blaKPC copy numbers. KPC-KP isolates with decreased susceptibility to MV were detected among a collection of isolates predating the availability of MV.

2.
Antimicrob Agents Chemother ; 68(9): e0075124, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39133021

RESUMO

Taniborbactam, a bicyclic boronate ß-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC), Verona integron-encoded metallo-ß-lactamase (VIM), New Delhi metallo-ß-lactamase (NDM), extended-spectrum beta-lactamases (ESBLs), OXA-48, and AmpC ß-lactamases, is under clinical development in combination with cefepime. Susceptibility of 200 previously characterized carbapenem-resistant K. pneumoniae and 197 multidrug-resistant (MDR) Pseudomonas aeruginosa to cefepime-taniborbactam and comparators was determined by broth microdilution. For K. pneumoniae (192 KPC; 7 OXA-48-related), MIC90 values of ß-lactam components for cefepime-taniborbactam, ceftazidime-avibactam, and meropenem-vaborbactam were 2, 2, and 1 mg/L, respectively. For cefepime-taniborbactam, 100% and 99.5% of isolates of K. pneumoniae were inhibited at ≤16 mg/L and ≤8 mg/L, respectively, while 98.0% and 95.5% of isolates were susceptible to ceftazidime-avibactam and meropenem-vaborbactam, respectively. For P. aeruginosa, MIC90 values of ß-lactam components of cefepime-taniborbactam, ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam were 16, >8, >8, and >4 mg/L, respectively. Of 89 carbapenem-susceptible isolates, 100% were susceptible to ceftolozane-tazobactam, ceftazidime-avibactam, and cefepime-taniborbactam at ≤8 mg/L. Of 73 carbapenem-intermediate/resistant P. aeruginosa isolates without carbapenemases, 87.7% were susceptible to ceftolozane-tazobactam, 79.5% to ceftazidime-avibactam, and 95.9% and 83.6% to cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively. Cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively, was active against 73.3% and 46.7% of 15 VIM- and 60.0% and 35.0% of 20 KPC-producing P. aeruginosa isolates. Of all 108 carbapenem-intermediate/resistant P. aeruginosa isolates, cefepime-taniborbactam was active against 86.1% and 69.4% at ≤16 mg/L and ≤8 mg/L, respectively, compared to 59.3% for ceftolozane-tazobactam and 63.0% for ceftazidime-avibactam. Cefepime-taniborbactam had in vitro activity comparable to ceftazidime-avibactam and greater than meropenem-vaborbactam against carbapenem-resistant K. pneumoniae and carbapenem-intermediate/resistant MDR P. aeruginosa.


Assuntos
Antibacterianos , Cefepima , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Inibidores de beta-Lactamases , Cefepima/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Cefalosporinas/farmacologia , Humanos , beta-Lactamases/metabolismo , beta-Lactamases/genética , Ácidos Borônicos/farmacologia , Carbapenêmicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ceftazidima/farmacologia , Ácidos Borínicos/farmacologia , Combinação de Medicamentos , Compostos Azabicíclicos/farmacologia , Ácidos Carboxílicos
4.
mBio ; : e0111823, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889005

RESUMO

Multi-drug resistant (MDR) Pseudomonas aeruginosa harbor a complex array of ß-lactamases and non-enzymatic resistance mechanisms. In this study, the activity of a ß-lactam/ß-lactam-enhancer, cefepime/zidebactam, and novel ß-lactam/ß-lactamase inhibitor combinations was determined against an MDR phenotype-enriched, challenge panel of P. aeruginosa (n = 108). Isolates were multi-clonal as they belonged to at least 29 distinct sequence types (STs) and harbored metallo-ß-lactamases, serine ß-lactamases, penicillin binding protein (PBP) mutations, and other non-enzymatic resistance mechanisms. Ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, and cefepime/taniborbactam demonstrated MIC90s of >128 mg/L, while cefepime/zidebactam MIC90 was 16 mg/L. In a neutropenic-murine lung infection model, a cefepime/zidebactam human epithelial-lining fluid-simulated regimen achieved or exceeded a translational end point of 1-log10 kill for the isolates with elevated cefepime/zidebactam MICs (16-32 mg/L), harboring VIM-2 or KPC-2 and alterations in PBP2 and PBP3. In the same model, to assess the impact of zidebactam on the pharmacodynamic (PD) requirement of cefepime, dose-fractionation studies were undertaken employing cefepime-susceptible P. aeruginosa isolates. Administered alone, cefepime required 47%-68% fT >MIC for stasis to ~1 log10 kill effect, while cefepime in the presence of zidebactam required just 8%-16% for >2 log10 kill effect, thus, providing the pharmacokinetic/PD basis for in vivo efficacy of cefepime/zidebactam against isolates with MICs up to 32 mg/L. Unlike ß-lactam/ß-lactamase inhibitors, ß-lactam enhancer mechanism-based cefepime/zidebactam shows a potential to transcend the challenge of ever-evolving resistance mechanisms by targeting multiple PBPs and overcoming diverse ß-lactamases including carbapenemases in P. aeruginosa.IMPORTANCECompared to other genera of Gram-negative pathogens, Pseudomonas is adept in acquiring complex non-enzymatic and enzymatic resistance mechanisms thus remaining a challenge to even novel antibiotics including recently developed ß-lactam and ß-lactamase inhibitor combinations. This study shows that the novel ß-lactam enhancer approach enables cefepime/zidebactam to overcome both non-enzymatic and enzymatic resistance mechanisms associated with a challenging panel of P. aeruginosa. This study highlights that the ß-lactam enhancer mechanism is a promising alternative to the conventional ß-lactam/ß-lactamase inhibitor approach in combating ever-evolving MDR P. aeruginosa.

5.
J Med Chem ; 66(13): 8510-8525, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37358467

RESUMO

Class C Acinetobacter-derived cephalosporinases (ADCs) represent an important target for inhibition in the multidrug-resistant pathogen Acinetobacter baumannii. Many ADC variants have emerged, and characterization of their structural and functional differences is essential. Equally as important is the development of compounds that inhibit all prevalent ADCs despite these differences. The boronic acid transition state inhibitor, MB076, a novel heterocyclic triazole with improved plasma stability, was synthesized and inhibits seven different ADC ß-lactamase variants with Ki values <1 µM. MB076 acted synergistically in combination with multiple cephalosporins to restore susceptibility. ADC variants containing an alanine duplication in the Ω-loop, specifically ADC-33, exhibited increased activity for larger cephalosporins, such as ceftazidime, cefiderocol, and ceftolozane. X-ray crystal structures of ADC variants in this study provide a structural context for substrate profile differences and show that the inhibitor adopts a similar conformation in all ADC variants, despite small changes near their active sites.


Assuntos
Acinetobacter baumannii , Cefalosporinase , Cefalosporinase/genética , Cefalosporinase/química , Cefalosporinase/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Cefalosporinas/farmacologia , beta-Lactamases/genética , beta-Lactamases/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
6.
Antibiotics (Basel) ; 12(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37107006

RESUMO

Acinetobacter baumannii is a Gram-negative organism listed as an urgent threat pathogen by the World Health Organization (WHO). Carbapenem-resistant A. baumannii (CRAB), especially, present therapeutic challenges due to complex mechanisms of resistance to ß-lactams. One of the most important mechanisms is the production of ß-lactamase enzymes capable of hydrolyzing ß-lactam antibiotics. Co-expression of multiple classes of ß-lactamases is present in CRAB; therefore, the design and synthesis of "cross-class" inhibitors is an important strategy to preserve the efficacy of currently available antibiotics. To identify new, nonclassical ß-lactamase inhibitors, we previously identified a sulfonamidomethaneboronic acid CR167 active against Acinetobacter-derived class C ß-lactamases (ADC-7). The compound demonstrated affinity for ADC-7 with a Ki = 160 nM and proved to be able to decrease MIC values of ceftazidime and cefotaxime in different bacterial strains. Herein, we describe the activity of CR167 against other ß-lactamases in A. baumannii: the cefepime-hydrolysing class C extended-spectrum ß-lactamase (ESAC) ADC-33 and the carbapenem-hydrolyzing OXA-24/40 (class D). These investigations demonstrate CR167 as a valuable cross-class (C and D) inhibitor, and the paper describes our attempts to further improve its activity. Five chiral analogues of CR167 were rationally designed and synthesized. The structures of OXA-24/40 and ADC-33 in complex with CR167 and select chiral analogues were obtained. The structure activity relationships (SARs) are highlighted, offering insights into the main determinants for cross-class C/D inhibitors and impetus for novel drug design.

7.
Infect Immun ; 90(3): e0066921, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35099267

RESUMO

Bacterial infections routinely cause inflammation and thereby impair osseointegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to those of Staphylococcus aureus in a murine implant infection model. Sterile implants and implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, levels of proinflammatory cytokines, and osseointegration were measured. All infections were localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2 increased the levels of proinflammatory cytokines and the chemokine CCL2 in the surrounding femurs, inhibited bone formation around the implant, and caused loss of the surrounding cortical bone, leading to decreases in both histomorphometric and biomechanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not alter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointegration of orthopedic implants in mice, and the murine model developed for this study will be useful for future efforts to clarify the mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.


Assuntos
Acinetobacter baumannii , Osteomielite , Infecções Estafilocócicas , Animais , Citocinas/uso terapêutico , Camundongos , Osseointegração , Osteomielite/etiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
8.
Eur J Med Chem ; 220: 113436, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933754

RESUMO

Serious infections caused by multidrug-resistant (MDR) organisms (Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) present a critical need for innovative drug development. Herein, we describe the preclinical evaluation of YU253911, 2, a novel γ-lactam siderophore antibiotic with potent antimicrobial activity against MDR Gram-negative pathogens. Penicillin-binding protein (PBP) 3 was shown to be a target of 2 using a binding assay with purified P. aeruginosa PBP3. The specific binding interactions with P. aeruginosa were further characterized with a high-resolution (2.0 Å) X-ray structure of the compound's acylation product in P. aeruginosa PBP3. Compound 2 was shown to have a concentration >1 µg/ml at the 6 h time point when administered intravenously or subcutaneously in mice. Employing a meropenem resistant strain of P. aeruginosa, 2 was shown to have dose-dependent efficacy at 50 and 100 mg/kg q6h dosing in a mouse thigh infection model. Lastly, we showed that a novel γ-lactam and ß-lactamase inhibitor (BLI) combination can effectively lower minimum inhibitory concentrations (MICs) against carbapenem resistant Acinetobacter spp. that demonstrated decreased susceptibility to 2 alone.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Lactamas/farmacologia , Sideróforos/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Lactamas/síntese química , Lactamas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Sideróforos/síntese química , Sideróforos/química , Relação Estrutura-Atividade
9.
Diagn Microbiol Infect Dis ; 99(2): 115242, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248392

RESUMO

Successful treatment of Acinetobacter baumannii infections require early and appropriate antimicrobial therapy. One of the first steps in this process is understanding which ß-lactamase (bla) alleles are present and in what combinations. Thus, we performed WGS on 98 carbapenem-resistant A. baumannii (CR Ab). In most isolates, an acquired blaOXA carbapenemase was found in addition to the intrinsic blaOXA allele. The most commonly found allele was blaOXA-23 (n = 78/98). In some isolates, blaOXA-23 was found in addition to other carbapenemase alleles: blaOXA-82 (n = 12/78), blaOXA-72 (n = 2/78) and blaOXA-24/40 (n = 1/78). Surprisingly, 20% of isolates carried carbapenemases not routinely assayed for by rapid molecular diagnostic platforms, i.e., blaOXA-82 and blaOXA-172; all had ISAba1 elements. In 8 CR Ab, blaOXA-82 or blaOXA-172 was the only carbapenemase. Both blaOXA-24/40 and its variant blaOXA-72 were each found in 6/98 isolates. The most prevalent ADC variants were blaADC-30 (21%), blaADC-162 (21%), and blaADC-212 (26%). Complete combinations are reported.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/isolamento & purificação , Genoma Bacteriano/genética , Humanos
10.
J Med Chem ; 63(11): 5990-6002, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32420736

RESUMO

Treatment of multidrug-resistant Gram-negative bacterial pathogens represents a critical clinical need. Here, we report a novel γ-lactam pyrazolidinone that targets penicillin-binding proteins (PBPs) and incorporates a siderophore moiety to facilitate uptake into the periplasm. The MIC values of γ-lactam YU253434, 1, are reported along with the finding that 1 is resistant to hydrolysis by all four classes of ß-lactamases. The druglike characteristics and mouse PK data are described along with the X-ray crystal structure of 1 binding to its target PBP3.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lactamas/química , Sideróforos/química , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Bactérias Gram-Negativas/efeitos dos fármacos , Meia-Vida , Lactamas/metabolismo , Lactamas/farmacocinética , Lactamas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
11.
Lancet Infect Dis ; 20(6): 731-741, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32151332

RESUMO

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are a global threat. We aimed to describe the clinical and molecular characteristics of Centers for Disease Control and Prevention (CDC)-defined CRE in the USA. METHODS: CRACKLE-2 is a prospective, multicentre, cohort study. Patients hospitalised in 49 US hospitals, with clinical cultures positive for CDC-defined CRE between April 30, 2016, and Aug 31, 2017, were included. There was no age exclusion. The primary outcome was desirability of outcome ranking (DOOR) at 30 days after index culture. Clinical data and bacteria were collected, and whole genome sequencing was done. This trial is registered with ClinicalTrials.gov, number NCT03646227. FINDINGS: 1040 patients with unique isolates were included, 449 (43%) with infection and 591 (57%) with colonisation. The CDC-defined CRE admission rate was 57 per 100 000 admissions (95% CI 45-71). Three subsets of CDC-defined CRE were identified: carbapenemase-producing Enterobacterales (618 [59%] of 1040), non-carbapenemase-producing Enterobacterales (194 [19%]), and unconfirmed CRE (228 [22%]; initially reported as CRE, but susceptible to carbapenems in two central laboratories). Klebsiella pneumoniae carbapenemase-producing clonal group 258 K pneumoniae was the most common carbapenemase-producing Enterobacterales. In 449 patients with CDC-defined CRE infections, DOOR outcomes were not significantly different in patients with carbapenemase-producing Enterobacterales, non-carbapenemase-producing Enterobacterales, and unconfirmed CRE. At 30 days 107 (24%, 95% CI 20-28) of these patients had died. INTERPRETATION: Among patients with CDC-defined CRE, similar outcomes were observed among three subgroups, including the novel unconfirmed CRE group. CDC-defined CRE represent diverse bacteria, whose spread might not respond to interventions directed to carbapenemase-producing Enterobacterales. FUNDING: National Institutes of Health.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Idoso , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Estudos de Coortes , Infecções por Enterobacteriaceae/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Estudos Prospectivos , Estados Unidos
12.
Artigo em Inglês | MEDLINE | ID: mdl-32152078

RESUMO

Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Metiltransferases/genética , Sisomicina/análogos & derivados , Adulto , Idoso , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Feminino , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Sisomicina/farmacologia , Estados Unidos , beta-Lactamases/metabolismo
13.
Diagn Microbiol Infect Dis ; 97(1): 114996, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32098688

RESUMO

Whole genome sequencing (WGS) is replacing traditional microbiological typing methods for investigation of outbreaks in clinical settings. Here, we used a clinical microbiology laboratory core genome multilocus sequence typing (cgMLST) workflow to analyze 40 isolates of K. pneumoniae which are part of the Antimicrobial Resistance Leadership Group (ARLG) isolate collection, alongside 10 Mayo Clinic K. pneumoniae isolates, comparing results to those of pulsed-field gel electrophoresis (PFGE). Additionally, we used the WGS data to predict phenotypic antimicrobial susceptibility (AST). Thirty-one of 40 ARLG K. pneumoniae isolates belonged to the same PFGE type, all of which, alongside 3 isolates of different PFGE types, formed a large cluster by cgMLST. PFGE and cgMLST were completely concordant for the 10 Mayo Clinic K. pneumoniae isolates. For AST prediction, the overall agreement between phenotypic AST and genotypic prediction was 95.6%.


Assuntos
Antibacterianos/farmacologia , Genoma Bacteriano , Infecções por Klebsiella/diagnóstico , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , Tipagem de Sequências Multilocus , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Genótipo , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Fenótipo , Sequenciamento Completo do Genoma , Fluxo de Trabalho , beta-Lactamases
14.
Artigo em Inglês | MEDLINE | ID: mdl-31712217

RESUMO

Unlike for classes A and B, a standardized amino acid numbering scheme has not been proposed for the class C (AmpC) ß-lactamases, which complicates communication in the field. Here, we propose a scheme developed through a collaborative approach that considers both sequence and structure, preserves traditional numbering of catalytically important residues (Ser64, Lys67, Tyr150, and Lys315), is adaptable to new variants or enzymes yet to be discovered and includes a variation for genetic and epidemiological applications.


Assuntos
Proteínas de Bactérias/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Mutação , Terminologia como Assunto , Resistência beta-Lactâmica/genética , beta-Lactamases/classificação , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Cooperação Internacional , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/química , beta-Lactamas/farmacologia
15.
J Antimicrob Chemother ; 74(9): 2631-2639, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170282

RESUMO

BACKGROUND: New strategies are needed to slow the emergence of antibiotic resistance among bacterial pathogens. In particular, society is experiencing a crisis of antibiotic-resistant infections caused by Gram-negative bacterial pathogens and novel therapeutics are desperately needed to combat such diseases. Acquisition of iron from the host is a nearly universal requirement for microbial pathogens-including Gram-negative bacteria-to cause infection. We have previously reported that apo-transferrin (lacking iron) can inhibit the growth of Staphylococcus aureus in culture and diminish emergence of resistance to rifampicin. OBJECTIVES: To define the potential of apo-transferrin to inhibit in vitro growth of Klebsiella pneumoniae and Acinetobacter baumannii, key Gram-negative pathogens, and to reduce emergence of resistance to antibiotics. METHODS: The efficacy of apo-transferrin alone or in combination with meropenem or ciprofloxacin against K. pneumoniae and A. baumannii clinical isolates was tested by MIC assay, time-kill assay and assays for the selection of resistant mutants. RESULTS: We confirmed that apo-transferrin had detectable MICs for all strains tested of both pathogens. Apo-transferrin mediated an additive antimicrobial effect for both antibiotics against multiple strains in time-kill assays. Finally, adding apo-transferrin to ciprofloxacin or meropenem reduced the emergence of resistant mutants during 20 day serial passaging of both species. CONCLUSIONS: These results suggest that apo-transferrin may have promise to suppress the emergence of antibiotic-resistant mutants when treating infections caused by Gram-negative bacteria.


Assuntos
Antibacterianos/uso terapêutico , Apoproteínas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Transferrina/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Ciprofloxacina/uso terapêutico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação
16.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862744

RESUMO

Multidrug-resistant (MDR) Acinetobacter spp. poses a significant therapeutic challenge in part due to the presence of chromosomally encoded ß-lactamases, including class C Acinetobacter-derived cephalosporinases (ADC) and class D oxacillinases (OXA), as well as plasmid-mediated class A ß-lactamases. Importantly, OXA-like ß-lactamases represent a gap in the spectrum of inhibition by recently approved ß-lactamase inhibitors such as avibactam and vaborbactam. ETX2514 is a novel, rationally designed, diazabicyclooctenone inhibitor that effectively targets class A, C, and D ß-lactamases. We show that addition of ETX2514 significantly increased the susceptibility of clinical Acinetobacterbaumannii isolates to sulbactam. AdeB and AdeJ were identified to be key efflux constituents for ETX2514 in A. baumannii The combination of sulbactam and ETX2514 was efficacious against A. baumannii carrying blaTEM-1, blaADC-82, blaOXA-23, and blaOXA-66 in a neutropenic murine thigh infection model. We also show that, in vitro, ETX2514 inhibited ADC-7 (k2/Ki 1.0 ± 0.1 × 106 M-1 s-1) and OXA-58 (k2/Ki 2.5 ± 0.3 × 105 M-1 s-1). Cocrystallization of ETX2514 with OXA-24/40 revealed hydrogen bonding interactions between ETX2514 and residues R261, S219, and S128 of OXA-24/40 in addition to a chloride ion occupied in the active site. Further, the C3 methyl group of ETX2514 shifts the position of M223. In conclusion, the sulbactam-ETX2514 combination possesses a broadened inhibitory range to include class D ß-lactamases as well as class A and C ß-lactamases and is a promising therapeutic candidate for infections caused by MDR Acinetobacter spp.IMPORTANCE The number and diversity of ß-lactamases are steadily increasing. The emergence of ß-lactamases that hydrolyze carbapenems poses a significant threat to our antibiotic armamentarium. The explosion of OXA enzymes that are carbapenem hydrolyzers is a major challenge (carbapenem-hydrolyzing class D [CHD]). An urgent need exists to discover ß-lactamase inhibitors with class D activity. The sulbactam-ETX2514 combination demonstrates the potential to become a treatment regimen of choice for Acinetobacter spp. producing class D ß-lactamases.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/administração & dosagem , Compostos Azabicíclicos/administração & dosagem , Sulbactam/administração & dosagem , Inibidores de beta-Lactamases/administração & dosagem , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cristalografia por Raios X , Modelos Animais de Doenças , Camundongos , Ligação Proteica , Conformação Proteica , Sulbactam/farmacologia , Resultado do Tratamento , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30782989

RESUMO

There has been renewed interest in combining traditional small-molecule antimicrobial agents with nontraditional therapies to potentiate antimicrobial effects. Apotransferrin, which decreases iron availability to microbes, is one such approach. We conducted a 48-h one-compartment in vitro infection model to explore the impact of apotransferrin on the bactericidal activity of ciprofloxacin. The challenge panel included four Klebsiella pneumoniae isolates with ciprofloxacin MIC values ranging from 0.08 to 32 mg/liter. Each challenge isolate was subjected to an ineffective ciprofloxacin monotherapy exposure (free-drug area under the concentration-time curve over 24 h divided by the MIC [AUC/MIC ratio] ranging from 0.19 to 96.6) with and without apotransferrin. As expected, the no-treatment and apotransferrin control arms showed unaltered prototypical logarithmic bacterial growth. We identified relationships between exposure and change in bacterial density for ciprofloxacin alone (R2 = 0.64) and ciprofloxacin in combination with apotransferrin (R2 = 0.84). Addition of apotransferrin to ciprofloxacin enabled a remarkable reduction in bacterial density across a wide range of ciprofloxacin exposures. For instance, at a ciprofloxacin AUC/MIC ratio of 20, ciprofloxacin monotherapy resulted in nearly 2 log10 CFU increase in bacterial density, while the combination of apotransferrin and ciprofloxacin resulted in 2 log10 CFU reduction in bacterial density. Furthermore, addition of apotransferrin significantly reduced the emergence of ciprofloxacin-resistant subpopulations compared to monotherapy. These data demonstrate that decreasing the rate of bacterial replication with apotransferrin in combination with antimicrobial therapy represents an opportunity to increase the magnitude of the bactericidal effect and to suppress the growth rate of drug-resistant subpopulations.


Assuntos
Antibacterianos/farmacologia , Apoproteínas/farmacologia , Ciprofloxacina/farmacologia , Transferrina/farmacologia , Fluoroquinolonas/farmacologia , Klebsiella/efeitos dos fármacos , Testes de Sensibilidade Microbiana
18.
Open Forum Infect Dis ; 6(1): ofy351, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30631796

RESUMO

In the Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE), trimethoprim-sulfamethoxazole (TMP-SMX) had a limited role in the treatment of less severe carbapenem-resistant Enterobacteriaceae (CRE) infections, especially urinary tract infections. Of tested CRE, only 29% were susceptible to TMP-SMX. Development of resistance further limits the use of TMP-SMX in CRE infections.

19.
Clin Infect Dis ; 68(11): 1823-1830, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30239599

RESUMO

BACKGROUND: Overcoming ß-lactam resistance in pathogens such as Pseudomonas aeruginosa is a major clinical challenge. Rapid molecular diagnostics (RMDs) have the potential to inform selection of empiric therapy in patients infected by P. aeruginosa. METHODS: In this study, we used a heterogeneous collection of 197 P. aeruginosa that included multidrug-resistant isolates to determine whether 2 representative RMDs (Acuitas Resistome test and VERIGENE gram-negative blood culture test) could identify susceptibility to 2 newer ß-lactam/ß-lactamase inhibitor (BL-BLI) combinations, ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (TOL/TAZO). RESULTS: We found that the studied RMD platforms were able to correctly identify BL-BLI susceptibility (susceptibility sensitivity, 100%; 95% confidence interval [CI], 97%, 100%) for both BLs-BLIs. However, their ability to detect resistance to these BLs-BLIs was lower (resistance sensitivity, 66%; 95% CI, 52%, 78% for TOL/TAZO and 33%; 95% CI, 20%, 49% for CZA). CONCLUSIONS: The diagnostic platforms studied showed the most potential in scenarios where a resistance gene was detected or in scenarios where a resistance gene was not detected and the prevalence of resistance to TOL/TAZO or CZA is known to be low. Clinicians need to be mindful of the benefits and risks that result from empiric treatment decisions that are based on resistance gene detection in P. aeruginosa, acknowledging that such decisions are impacted by the prevalence of resistance, which varies temporally and geographically.


Assuntos
Antibacterianos/uso terapêutico , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/uso terapêutico , Cefalosporinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Técnicas de Diagnóstico Molecular/normas , Infecções por Pseudomonas/tratamento farmacológico , Tazobactam/uso terapêutico , Antibacterianos/farmacologia , Combinação de Medicamentos , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular/métodos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sensibilidade e Especificidade , Resistência beta-Lactâmica , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico
20.
Artigo em Inglês | MEDLINE | ID: mdl-30323050

RESUMO

The activity of the siderophore cephalosporin cefiderocol is targeted against carbapenem-resistant Gram-negative bacteria. In this study, the activity of cefiderocol against characterized carbapenem-resistant Acinetobacter baumannii complex, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, and Enterobacteriaceae strains was determined by microdilution in iron-depleted Mueller-Hinton broth. The MIC90s against A. baumannii, S. maltophilia, and P. aeruginosa were 1, 0.25, and 0.5 mg/liter, respectively. Against Enterobacteriaceae, the MIC90 was 1 mg/liter for the group harboring OXA-48-like, 2 mg/liter for the group harboring KPC-3, and 8 mg/liter for the group harboring TEM/SHV ESBL, NDM, and KPC-2.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Stenotrophomonas maltophilia/efeitos dos fármacos , beta-Lactamases/genética , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Meios de Cultura , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Expressão Gênica , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sideróforos/farmacologia , Stenotrophomonas maltophilia/enzimologia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética , beta-Lactamases/metabolismo , Cefiderocol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA