Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(1): 111996, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680776

RESUMO

Chromatin organization must be maintained during cell proliferation to preserve cellular identity and genome integrity. However, DNA replication results in transient displacement of DNA-bound proteins, and it is unclear how they regain access to newly replicated DNA. Using quantitative proteomics coupled to Nascent Chromatin Capture or isolation of Proteins on Nascent DNA, we provide time-resolved binding kinetics for thousands of proteins behind replisomes within euchromatin and heterochromatin in human cells. This shows that most proteins regain access within minutes to newly replicated DNA. In contrast, 25% of the identified proteins do not, and this delay cannot be inferred from their known function or nuclear abundance. Instead, chromatin organization and G1 phase entry affect their reassociation. Finally, DNA replication not only disrupts but also promotes recruitment of transcription factors and chromatin remodelers, providing a significant advance in understanding how DNA replication could contribute to programmed changes of cell memory.


Assuntos
Cromatina , Proteômica , Humanos , Replicação do DNA , Eucromatina , Heterocromatina , DNA
2.
Eur J Immunol ; 52(11): 1776-1788, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36086884

RESUMO

Bach2 codes for a transcriptional regulator exerting major influences on T cell-mediated immune regulation. Effector CTLs derived from in vitro activation of murine CD8+ T cells showed increased proliferative and cytolytic capacity in the absence of BACH2. Before activation, BACH2-deficient splenic CD8+ T cells had a higher abundance of memory and reduced abundance of naïve cells compared to wild-type. CTLs derived from central memory T cells were more potently cytotoxic than those derived from naïve T cells, but even within separated subsets, BACH2-deficiency conferred a cytotoxic advantage. Immunofluorescence and electron microscopy revealed larger granules in BACH2-deficient compared to wild-type CTLs, and proteomic analysis showed an increase in granule content, including perforin and granzymes. Thus, the enhanced cytotoxicity observed in effector CTLs lacking BACH2 arises not only from differences in their initial differentiation state but also inherent production of enlarged cytolytic granules. These results demonstrate how a single gene deletion can produce a CTL super-killer.


Assuntos
Linfócitos T CD8-Positivos , Citotoxicidade Imunológica , Camundongos , Animais , Deleção de Genes , Proteômica , Linfócitos T Citotóxicos , Perforina , Granzimas/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética
3.
iScience ; 25(2): 103827, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198887

RESUMO

To overcome oxidative, inflammatory, and metabolic stress, cells have evolved cytoprotective protein networks controlled by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and its negative regulator, Kelch-like ECH associated protein 1 (Keap1). Here, using high-resolution mass spectrometry we characterize the proteomes of macrophages with altered Nrf2 status revealing significant differences among the genotypes in metabolism and redox homeostasis, which were validated with respirometry and metabolomics. Nrf2 affected the proteome following lipopolysaccharide (LPS) stimulation, with alterations in redox, carbohydrate and lipid metabolism, and innate immunity. Notably, Nrf2 activation promoted mitochondrial fusion. The Keap1 inhibitor, 4-octyl itaconate remodeled the inflammatory macrophage proteome, increasing redox and suppressing type I interferon (IFN) response. Similarly, pharmacologic or genetic Nrf2 activation inhibited the transcription of IFN-ß and its downstream effector IFIT2 during LPS stimulation. These data suggest that Nrf2 activation facilitates metabolic reprogramming and mitochondrial adaptation, and finetunes the innate immune response in macrophages.

4.
Elife ; 102021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473623

RESUMO

Tissue-resident intestinal intraepithelial T lymphocytes (T-IEL) patrol the gut and have important roles in regulating intestinal homeostasis. T-IEL include both induced T-IEL, derived from systemic antigen-experienced lymphocytes, and natural T-IEL, which are developmentally targeted to the intestine. While the processes driving T-IEL development have been elucidated, the precise roles of the different subsets and the processes driving activation and regulation of these cells remain unclear. To gain functional insights into these enigmatic cells, we used high-resolution, quantitative mass spectrometry to compare the proteomes of induced T-IEL and natural T-IEL subsets, with naive CD8+ T cells from lymph nodes. This data exposes the dominant effect of the gut environment over ontogeny on T-IEL phenotypes. Analyses of protein copy numbers of >7000 proteins in T-IEL reveal skewing of the cell surface repertoire towards epithelial interactions and checkpoint receptors; strong suppression of the metabolic machinery indicating a high energy barrier to functional activation; upregulated cholesterol and lipid metabolic pathways, leading to high cholesterol levels in T-IEL; suppression of T cell antigen receptor signalling and expression of the transcription factor TOX, reminiscent of chronically activated T cells. These novel findings illustrate how T-IEL integrate multiple tissue-specific signals to maintain their homeostasis and potentially function.


Assuntos
Linhagem da Célula , Microambiente Celular , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/metabolismo , Ativação Linfocitária , Proteoma , Proteômica , Animais , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Homeostase , Mucosa Intestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
5.
Cell Rep ; 35(4): 109032, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910018

RESUMO

X chromosome inactivation (XCI) is a dosage compensation mechanism in female mammals whereby transcription from one X chromosome is repressed. Analysis of human induced pluripotent stem cells (iPSCs) derived from female donors identified that low levels of XIST RNA correlated strongly with erosion of XCI. Proteomic analysis, RNA sequencing (RNA-seq), and polysome profiling showed that XCI erosion resulted in amplified RNA and protein expression from X-linked genes, providing a proteomic characterization of skewed dosage compensation. Increased protein expression was also detected from autosomal genes without an mRNA increase, thus altering the protein-RNA correlation between the X chromosome and autosomes. XCI-eroded lines display an ∼13% increase in total cell protein content, with increased ribosomal proteins, ribosome biogenesis and translation factors, and polysome levels. We conclude that XCI erosion in iPSCs causes a remodeling of the proteome, affecting the expression of a much wider range of proteins and disease-linked loci than previously realized.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteoma/metabolismo , Inativação do Cromossomo X/genética , Feminino , Humanos
6.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822765

RESUMO

Limiting dysfunctional neutrophilic inflammation while preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks, and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labeled amino acids into metabolic enzymes, proinflammatory mediators, and granule proteins, we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycemia, characteristic of inflamed tissues, promoted this extracellular protein scavenging with activation of the lysosomal compartment, further driving exploitation of the protein-rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways that enable neutrophils to sustain synthetic and effector functions in the tissues.


Assuntos
Carbono/metabolismo , Lisossomos/metabolismo , Neutrófilos/metabolismo , Biossíntese de Proteínas , Proteoma/metabolismo , Animais , Hipóxia Celular , Humanos , Camundongos
7.
Biochem J ; 478(1): 79-98, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33305809

RESUMO

The integration of multiple signalling pathways that co-ordinate T cell metabolism and transcriptional reprogramming is required to drive T cell differentiation and proliferation. One key T cell signalling module is mediated by extracellular signal-regulated kinases (ERKs) which are activated in response to antigen receptor engagement. The activity of ERKs is often used to report antigen receptor occupancy but the full details of how ERKs control T cell activation is not understood. Accordingly, we have used mass spectrometry to explore how ERK signalling pathways control antigen receptor driven proteome restructuring in CD8+ T cells to gain insights about the biological processes controlled by ERKs in primary lymphocytes. Quantitative analysis of >8000 proteins identified 900 ERK regulated proteins in activated CD8+ T cells. The data identify both positive and negative regulatory roles for ERKs during T cell activation and reveal that ERK signalling primarily controls the repertoire of transcription factors, cytokines and cytokine receptors expressed by activated T cells. It was striking that a large proportion of the proteome restructuring that is driven by triggering of the T cell antigen receptor is not dependent on ERK activation. However, the selective targets of the ERK signalling module include the critical effector molecules and the cytokines that allow T cell communication with other immune cells to mediate adaptive immune responses.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Linfopoese/genética , Sistema de Sinalização das MAP Quinases/genética , Proteoma/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzamidas/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromatografia Líquida , Citocinas/metabolismo , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Ontologia Genética , Linfopoese/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Proteoma/efeitos dos fármacos , Proteômica , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
8.
Nat Commun ; 11(1): 1357, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170114

RESUMO

Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling. Upon ESC differentiation, FGF4 utilises a bimodal strategy to disable EPHA2, which is accompanied by transcriptional induction of EFN ligands. Mechanistically, FGF4-ERK1/2-RSK signalling inhibits EPHA2 via Ser/Thr phosphorylation, whilst FGF4-ERK1/2 disrupts a core pluripotency transcriptional circuit required for Epha2 gene expression. This system also operates in mouse and human embryos, where EPHA receptors are enriched in pluripotent cells whilst surrounding lineage-specified trophectoderm expresses EFNA ligands. Our data provide insight into function and regulation of EPH-EFN signalling in ESCs, and suggest that segregated EPH-EFN expression coordinates cell fate with compartmentalisation during early embryonic development.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteômica/métodos , Receptor EphA2/metabolismo , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Efrina-A2 , Fator 4 de Crescimento de Fibroblastos/metabolismo , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Receptor EphA2/genética , Transdução de Sinais
9.
Nat Immunol ; 20(11): 1542-1554, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591570

RESUMO

Quantitative mass spectrometry reveals how CD4+ and CD8+ T cells restructure proteomes in response to antigen and mammalian target of rapamycin complex 1 (mTORC1). Analysis of copy numbers per cell of >9,000 proteins provides new understanding of T cell phenotypes, exposing the metabolic and protein synthesis machinery and environmental sensors that shape T cell fate. We reveal that lymphocyte environment sensing is controlled by immune activation, and that CD4+ and CD8+ T cells differ in their intrinsic nutrient transport and biosynthetic capacity. Our data also reveal shared and divergent outcomes of mTORC1 inhibition in naïve versus effector T cells: mTORC1 inhibition impaired cell cycle progression in activated naïve cells, but not effector cells, whereas metabolism was consistently impacted in both populations. This study provides a comprehensive map of naïve and effector T cell proteomes, and a resource for exploring and understanding T cell phenotypes and cell context effects of mTORC1.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Proteoma/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Pontos de Checagem do Ciclo Celular/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Masculino , Espectrometria de Massas , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Proteoma/imunologia , Proteômica , Sirolimo/farmacologia
10.
Mol Cell Proteomics ; 18(10): 1967-1980, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332098

RESUMO

Multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent, tandem mass tags (TMT) in particular. Here we used a large iPSC proteomic experiment with twenty-four 10-plex TMT batches to evaluate the effect of integrating multiple TMT batches within a single analysis. We identified a significant inflation rate of protein missing values as multiple batches are integrated and show that this pattern is aggravated at the peptide level. We also show that without normalization strategies to address the batch effects, the high precision of quantitation within a single multiplexed TMT batch is not reproduced when data from multiple TMT batches are integrated.Further, the incidence of false positives was studied by using Y chromosome peptides as an internal control. The iPSC lines quantified in this data set were derived from both male and female donors, hence the peptides mapped to the Y chromosome should be absent from female lines. Nonetheless, these Y chromosome-specific peptides were consistently detected in the female channels of all TMT batches. We then used the same Y chromosome specific peptides to quantify the level of ion coisolation as well as the effect of primary and secondary reporter ion interference. These results were used to propose solutions to mitigate the limitations of multi-batch TMT analyses. We confirm that including a common reference line in every batch increases precision by facilitating normalization across the batches and we propose experimental designs that minimize the effect of cross population reporter ion interference.


Assuntos
Cromossomos Humanos Y/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos/análise , Proteômica/métodos , Células Cultivadas , Cromatografia Líquida , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
11.
Elife ; 82019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916644

RESUMO

Immune activated T lymphocytes modulate the activity of key metabolic pathways to support the transcriptional reprograming and reshaping of cell proteomes that permits effector T cell differentiation. The present study uses high resolution mass spectrometry and metabolic labelling to explore how murine T cells control the methionine cycle to produce methyl donors for protein and nucleotide methylations. We show that antigen receptor engagement controls flux through the methionine cycle and RNA and histone methylations. We establish that the main rate limiting step for protein synthesis and the methionine cycle is control of methionine transporter expression. Only T cells that respond to antigen to upregulate and sustain methionine transport are supplied with methyl donors that permit the dynamic nucleotide methylations and epigenetic reprogramming that drives T cell differentiation. These data highlight how the regulation of methionine transport licenses use of methionine for multiple fundamental processes that drive T lymphocyte proliferation and differentiation.


Assuntos
Metionina/metabolismo , Receptores de Antígenos/metabolismo , Linfócitos T/metabolismo , Animais , Histonas/metabolismo , Espectrometria de Massas , Análise do Fluxo Metabólico , Metilação , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Processamento Pós-Transcricional do RNA
12.
Nat Commun ; 9(1): 2341, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904050

RESUMO

Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.


Assuntos
Aminoácidos/química , Células Matadoras Naturais/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Citocinas/metabolismo , Glutamina/química , Quinase 3 da Glicogênio Sintase/metabolismo , Glicólise , Humanos , Células K562 , Células Matadoras Naturais/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Subpopulações de Linfócitos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Proteômica , Ácidos Tricarboxílicos/química
13.
EMBO Rep ; 18(7): 1108-1122, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28588073

RESUMO

Pluripotent stem cells (PSCs) hold great clinical potential, as they possess the capacity to differentiate into fully specialised tissues such as pancreas, liver, neurons and cardiac muscle. However, the molecular mechanisms that coordinate pluripotent exit with lineage specification remain poorly understood. To address this question, we perform a small molecule screen to systematically identify novel regulators of the Smad2 signalling network, a key determinant of PSC fate. We reveal an essential function for BET family bromodomain proteins in Smad2 activation, distinct from the role of Brd4 in pluripotency maintenance. Mechanistically, BET proteins specifically engage Nodal gene regulatory elements (NREs) to promote Nodal signalling and Smad2 developmental responses. In pluripotent cells, Brd2-Brd4 occupy NREs, but only Brd4 is required for pluripotency gene expression. Brd4 downregulation facilitates pluripotent exit and drives enhanced Brd2 NRE occupancy, thereby unveiling a specific function for Brd2 in differentiative Nodal-Smad2 signalling. Therefore, distinct BET functionalities and Brd4-Brd2 isoform switching at NREs coordinate pluripotent exit with lineage specification.


Assuntos
Diferenciação Celular , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Smad2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem da Célula , Humanos , Camundongos , Proteínas/metabolismo , Transdução de Sinais
14.
Nat Immunol ; 17(1): 104-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26551880

RESUMO

We used high-resolution mass spectrometry to map the cytotoxic T lymphocyte (CTL) proteome and the effect of the metabolic checkpoint kinase mTORC1 on CTLs. The CTL proteome was dominated by metabolic regulators and granzymes, and mTORC1 selectively repressed and promoted expression of a subset of CTL proteins (~10%). These included key CTL effector molecules, signaling proteins and a subset of metabolic enzymes. Proteomic data highlighted the potential for negative control of the production of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) by mTORC1 in CTLs. mTORC1 repressed PtdIns(3,4,5)P3 production and determined the requirement for mTORC2 in activation of the kinase Akt. Our unbiased proteomic analysis thus provides comprehensive understanding of CTL identity and the control of CTL function by mTORC1.


Assuntos
Complexos Multiproteicos/metabolismo , Proteoma/imunologia , Linfócitos T Citotóxicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Cromatografia , Ensaio de Imunoadsorção Enzimática , Feminino , Immunoblotting , Masculino , Espectrometria de Massas , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Linfócitos T Citotóxicos/imunologia , Serina-Treonina Quinases TOR/imunologia
15.
EMBO J ; 34(15): 2008-24, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26136212

RESUMO

Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses.


Assuntos
Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Interleucina-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Análise de Variância , Animais , Western Blotting , Clonagem Molecular , Citometria de Fluxo , Leupeptinas , Camundongos , Camundongos Transgênicos , Mutagênese , Proteínas Proto-Oncogênicas c-myc/imunologia , Piridinas , Pirimidinas , Reação em Cadeia da Polimerase em Tempo Real
16.
Mol Cell Proteomics ; 13(12): 3544-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266776

RESUMO

The focus of the present study was to characterize the phosphoproteome of cytotoxic T cells and to explore the role of the serine threonine kinase PKD2 (Protein Kinase D2) in the phosphorylation networks of this key lymphocyte population. We used Stable Isotope Labeling of Amino acids in Culture (SILAC) combined with phosphopeptide enrichment and quantitative mass-spectrometry to determine the impact of PKD2 loss on the cytotoxic T cells phosphoproteome. We identified 15,871 phosphorylations on 3505 proteins in cytotoxic T cells. 450 phosphosites on 281 proteins were down-regulated and 300 phosphosites on 196 proteins were up-regulated in PKD2 null cytotoxic T cells. These data give valuable new insights about the protein phosphorylation networks operational in effector T cells and reveal that PKD2 regulates directly and indirectly about 5% of the cytotoxic T-cell phosphoproteome. PKD2 candidate substrates identified in this study include proteins involved in two distinct biological functions: regulation of protein sorting and intracellular vesicle trafficking, and control of chromatin structure, transcription, and translation. In other cell types, PKD substrates include class II histone deacetylases such as HDAC7 and actin regulatory proteins such as Slingshot. The current data show these are not PKD substrates in primary T cells revealing that the functional role of PKD isoforms is different in different cell lineages.


Assuntos
Redes Reguladoras de Genes , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Linfócitos T Citotóxicos/metabolismo , Canais de Cátion TRPP/genética , Animais , Anticorpos/farmacologia , Complexo CD3/genética , Complexo CD3/metabolismo , Isótopos de Carbono , Regulação da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Marcação por Isótopo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Isótopos de Nitrogênio , Especificidade de Órgãos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/genética , Fosforilação , Proteoma/genética , Transdução de Sinais , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Canais de Cátion TRPP/deficiência
17.
J Exp Med ; 209(13): 2441-53, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23183047

RESUMO

mTORC1 (mammalian target of rapamycin complex 1) controls transcriptional programs that determine CD8+ cytolytic T cell (CTL) fate. In some cell systems, mTORC1 couples phosphatidylinositol-3 kinase (PI3K) and Akt to the control of glucose uptake and glycolysis. However, PI3K-Akt-independent mechanisms control glucose metabolism in CD8+ T cells, and the role of mTORC1 has not been explored. The present study now demonstrates that mTORC1 activity in CD8+ T cells is not dependent on PI3K or Akt but is critical to sustain glucose uptake and glycolysis in CD8+ T cells. We also show that PI3K- and Akt-independent pathways mediated by mTORC1 regulate the expression of HIF1 (hypoxia-inducible factor 1) transcription factor complex. This mTORC1-HIF1 pathway is required to sustain glucose metabolism and glycolysis in effector CTLs and strikingly functions to couple mTORC1 to a diverse transcriptional program that controls expression of glucose transporters, multiple rate-limiting glycolytic enzymes, cytolytic effector molecules, and essential chemokine and adhesion receptors that regulate T cell trafficking. These data reveal a fundamental mechanism linking nutrient and oxygen sensing to transcriptional control of CD8+ T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Quimiocinas/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Glicólise , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-2/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Complexos Multiproteicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...