Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0267021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35587493

RESUMO

Freshwaters are a very valuable resource in arid areas, such as Mediterranean countries. Freshwater systems are vulnerable ecological habitats, significantly disturbed globally and especially in arid areas. The Sea of Galilee is the largest surface freshwater body in the Middle East. It is an isolated habitat supporting unique fish populations, including endemic species and populations on the edge of their distribution range. Using the Sea of Galilee for water supply, fishing and recreation has been placing pressure on these fish populations. Therefore, efficient monitoring and effective actions can make a difference in the conservation of these unique fish populations. To set a baseline and develop molecular tools to do so, in this study, DNA barcoding was used to establish a database of molecular species identification based on sequences of Cytochrome C Oxidase subunit I gene. DNA barcodes for 22 species were obtained and deposited in Barcode of Life Database. Among these, 12 barcodes for 10 species were new to the database and different from those already there. Barcode sequences were queried against the database and similar barcodes from the same and closely related species were obtained. Disagreements between morphological and molecular species identification were identified for five species, which were further studied by phylogenetic and genetic distances analyses. These analyses suggested the Sea of Galilee contained hybrid fish of some species and other species for which the species definition should be reconsidered. Notably, the cyprinid fish defined as Garra rufa, should be considered as Garra jordanica. Taken together, along with data supporting reconsideration of species definition, this study sets the basis for further using molecular tools for monitoring fish populations, understanding their ecology, and effectively managing their conservation in this unique and important habitat and in the region.


Assuntos
Código de Barras de DNA Taxonômico , Água Doce , Animais , DNA , Bases de Dados Genéticas , Peixes/genética , Israel , Filogenia
2.
BMC Genomics ; 20(1): 1019, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878870

RESUMO

BACKGROUND: Infectious disease outbreaks form major setbacks to aquaculture production and to further development of this important sector. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus widely hampering production of common carp (Cyprinus carpio), one of the most farmed fish species worldwide. Genetically disease resistant strains are highly sought after as a sustainable solution to this problem. To study the genetic basis and cellular pathways underlying disease resistance, RNA-Seq was used to characterize transcriptional responses of susceptible and resistant fish at day 4 after CyHV-3 infection. RESULTS: In susceptible fish, over four times more differentially expressed genes were up-regulated between day 0 and 4 compared to resistant fish. Susceptible and resistant fish responded distinctively to infection as only 55 (9%) of the up-regulated genes were shared by these two fish types. Susceptible fish elicited a typical anti-viral response, involving interferon and interferon responsive genes, earlier than resistant fish did. Furthermore, chemokine profiles indicated that the two fish types elicited different cellular immunity responses. A comparative phylogenetic approach assisted in chemokine copies annotation pointing to different orthologous copies common to bony-fishes and even carp-specific paralogs that were differentially regulated and contributed to the different response of these two fish types. Susceptible fish up-regulated more ccl19 chemokines, which attract T-cells and macrophages, the anti-viral role of which is established, whereas resistant fish up-regulated more cxcl8/il8 chemokines, which attract neutrophils, the antiviral role of which is unfamiliar. CONCLUSIONS: Taken together, by pointing out transcriptional differences between susceptible and resistant fish in response to CyHV-3 infection, this study unraveled possible genes and pathways that take part in disease resistance mechanisms in fish and thus, enhances our understanding of fish immunogenetics and supports the development of sustainable and safe aquaculture.


Assuntos
Carpas/genética , Carpas/virologia , Resistência à Doença/genética , Doenças dos Peixes/virologia , Predisposição Genética para Doença/genética , Herpesviridae/fisiologia , Transcrição Gênica , Animais , Doenças dos Peixes/imunologia , Locos de Características Quantitativas/genética
3.
Sci Rep ; 9(1): 13001, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506510

RESUMO

Tilapias (family Cichlidae) are of importance in aquaculture and fisheries. Hybridisation and introgression are common within tilapia genera but are difficult to analyse due to limited numbers of species-specific genetic markers. We tested the potential of double digested restriction-site associated DNA (ddRAD) sequencing for discovering single nucleotide polymorphism (SNP) markers to distinguish between 10 tilapia species. Analysis of ddRAD data revealed 1,371 shared SNPs in the de novo-based analysis and 1,204 SNPs in the reference-based analysis. Phylogenetic trees based on these two analyses were very similar. A total of 57 species-specific SNP markers were found among the samples analysed of the 10 tilapia species. Another set of 62 species-specific SNP markers was identified from a subset of four species which have often been involved in hybridisation in aquaculture: 13 for Oreochromis niloticus, 23 for O. aureus, 12 for O. mossambicus and 14 for O. u. hornorum. A panel of 24 SNPs was selected to distinguish among these four species and validated using 91 individuals. Larger numbers of SNP markers were found that could distinguish between the pairs of species within this subset. This technique offers potential for the investigation of hybridisation and introgression among tilapia species in aquaculture and in wild populations.


Assuntos
Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Tilápia/classificação , Tilápia/genética , Animais , Hibridização Genética , Filogenia , Especificidade da Espécie
4.
Heredity (Edinb) ; 123(5): 565-578, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31036952

RESUMO

With the steady growth of the human population, food security becomes a prime challenge. Aquaculture is the fastest growing sector providing proteins from an animal source, but outbreaks of infectious diseases repeatedly hamper the production and further development of this sector. Breeding of disease-resistant strains is a desired sustainable solution to this problem. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus damaging production of common carp, an important food and ornamental fish. Previously, we have demonstrated successful introgression of CyHV-3 resistance from a feral strain to commercial strains. Here, we used genotyping by sequencing to identify two novel quantitative trait loci (QTLs) for disease survival that map to different linkage groups than two other QTLs that we previously identified. Effects of these four QTLs were validated and further studied in 14 families with various levels of disease resistance. CyHV-3 survival was found to be a quantitative trait conditioned by mild additive QTL effects and by intricate dominant allelic and epistatic QTL-QTL interactions. Both rare feral alleles and alleles common to feral and cultured strains contributed to survival. This and other advantages of feral alleles introgression were demonstrated. These QTLs, which affected survival of individuals within families, had no significant effect on variation in cumulative family % survival, suggesting that more between family variation remains to be explored. Unraveling the underlying genetics of survival is important for enhancing the breeding of resistant strains and our knowledge of disease resistance mechanisms.


Assuntos
Carpas , Doenças dos Peixes , Herpesviridae , Característica Quantitativa Herdável , Animais , Carpas/genética , Carpas/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/veterinária
5.
Front Genet ; 8: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344591

RESUMO

Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain "Amur Sassan" was successfully introgressed into two susceptible cultured strains up to the first backcross (BC1) generation. Variation in resistance of families from F1 and BC1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them to survive the disease. Taken together, in this study we have laid the foundation for breeding CyHV-3-resistant strains and started to address the mechanisms underlying the phenotypic differences in resistance to this disease.

6.
BMC Genomics ; 15: 774, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25199625

RESUMO

BACKGROUND: The probable influence of genes and the environment on sex determination in Nile tilapia suggests that it should be regarded as a complex trait. Detection of sex determination genes in tilapia has both scientific and commercial importance. The main objective was to detect genes and microRNAs that were differentially expressed by gender in early embryonic development. RESULTS: Artificial fertilization of Oreochromis niloticus XX females with either sex-reversed ΔXX males or genetically-modified YY 'supermales' resulted in all-female and all-male embryos, respectively. RNA of pools of all-female and all-male embryos at 2, 5 and 9 dpf were used as template for a custom Agilent eArray hybridization and next generation sequencing. Fifty-nine genes differentially expressed between genders were identified by a false discovery rate of p < 0.05. The most overexpressed genes were amh and tspan8 in males, and cr/20ß-hsd, gpa33, rtn4ipl and zp3 in females (p < 1 × 10-9). Validation of gene expression using qPCR in embryos and gonads indicated copy number variation in tspan8, gpa33, cr/20ß-hsd and amh. Sequencing of amh identified a male-specific duplication of this gene, denoted amhy, differing from the sequence of amh by a 233 bp deletion on exonVII, hence lacking the capability to encode the protein motif that binds to the transforming growth factor beta receptor (TGF-ß domain). amh and amhy segregated in the mapping family in full concordance with SD-linked marker on LG23 signifying the QTL for SD. We discovered 831 microRNAs in tilapia embryos of which nine had sexually dimorphic expression patterns by a false discovery rate of p < 0.05. An up-regulated microRNA in males, pma-mir-4585, was characterized with all six predicted target genes including cr/20ß-hsd, down-regulated in males. CONCLUSIONS: This study reports the first discovery of sexually differentially expressed genes and microRNAs at a very early stage of tilapia embryonic development, i.e. from 2 dpf. Genes with sexually differential expression patterns are enriched for copy number variation. A novel male-specific duplication of amh, denoted amhy, lacking the TGF-ß domain was identified and mapped to the QTL region on LG23 for SD, thus indicating its potential role in SD.


Assuntos
Ciclídeos/embriologia , Ciclídeos/genética , Proteínas de Peixes/genética , MicroRNAs/genética , Cromossomo Y/genética , Animais , Ciclídeos/fisiologia , Variações do Número de Cópias de DNA , Feminino , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Locos de Características Quantitativas , Análise de Sequência de RNA , Deleção de Sequência , Caracteres Sexuais , Processos de Determinação Sexual , Diferenciação Sexual
7.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25186727

RESUMO

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Evolução Molecular , Especiação Genética , Genoma/genética , África Oriental , Animais , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica/genética , Genômica , Lagos , MicroRNAs/genética , Filogenia , Polimorfismo Genético/genética
8.
G3 (Bethesda) ; 4(8): 1455-64, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24902605

RESUMO

The white grouper (Epinephelus aeneus) is a promising candidate for domestication and aquaculture due to its fast growth, excellent taste, and high market price. A linkage map is an essential framework for mapping quantitative trait loci for economic traits and the study of genome evolution. DNA of a single individual was deep-sequenced, and microsatellite markers were identified in 177 of the largest scaffolds of the sequence assembly. The success rate of developing polymorphic homologous markers was 94.9% compared with 63.1% of heterologous markers from other grouper species. Of the 12 adult mature fish present in the broodstock tank, two males and two females were identified as parents of the assigned offspring by parenthood analysis using 34 heterologous markers. A single full-sib family of 48 individuals was established for the construction of first-generation linkage maps based on genotyping data of 222 microsatellites. The markers were assigned to 24 linkage groups in accordance to the 24 chromosomal pairs. The female and male maps consisting of 203 and 202 markers spanned 1053 and 886 cM, with an average intermarker distance of 5.8 and 5.0 cM, respectively. Mapping of markers to linkage groups ends was enriched by using markers originating from scaffolds harboring telomeric repeat-containing RNA. Comparative mapping showed high synteny relationships among the white grouper, kelp grouper (E. bruneus), orange-spotted grouper (E. coioides), and Nile tilapia (Oreochromis niloticus). Thus, it would be useful to integrate the markers that were developed for different groupers, depending on sharing of sequence data, into a comprehensive consensus map.


Assuntos
Repetições de Microssatélites/genética , Perciformes/genética , Animais , Mapeamento Cromossômico , Feminino , Ligação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Análise de Sequência de DNA , Sintenia
9.
Fish Physiol Biochem ; 37(4): 863-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21461902

RESUMO

The physiological response of Mozambique and Nile tilapia transferred from fresh to brackish (15 ppt) water was compared during a one-week time course. Response in the pituitary was measured by the gene expression pattern of prolactin (PRL I), growth hormone (GH), and calcium-sensing receptor (CaSR), while the response in the gills was measured by the gene expression pattern of the prolactin receptor (PRL-R), Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and Na(+)/Cl(-) cotransporter (NCC), and by activity and expression of Na(+)/K(+)-ATPase (NKA). The time-course curves of plasma osmolality levels indicate a rapid elevation 24 h after transfer, which later decreased and maintained at stable level. PRL I expression decreased in both species, but with stronger response in the Nile tilapia, while no differences were found in the slightly elevated levels of GH mRNA. The branchial response demonstrated a faster up-regulation of NKA and NKCC in the Mozambique tilapia, but similar levels after a week, while Nile tilapia had stronger and constant down-regulation of NCC. The time-course response of the measured osmoregulatory parameters indicate that 24 h after transfer is a critical time point for brackish-water adaptation. The differences in responses to saltwater challenge between Mozambique and Nile tilapia shown in this study may be associated with the differences in saltwater tolerance between these two tilapiine species.


Assuntos
Brânquias/metabolismo , Hipófise/metabolismo , Salinidade , Tilápia/metabolismo , Equilíbrio Hidroeletrolítico , Adaptação Fisiológica , Animais , Masculino , ATPase Trocadora de Sódio-Potássio/metabolismo , Especificidade da Espécie , Tilápia/crescimento & desenvolvimento
10.
Fish Shellfish Immunol ; 30(1): 361-71, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21087670

RESUMO

Induction of innate immune pathways is critical for early host defense, but there is limited understanding of how teleost fishes recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition receptors (PRRs). TLR9 functions as a PRR that recognizes CpG motifs in bacterial and viral DNA and requires adaptor molecules MyD88 and TRAF6 for signal transduction. Here we report full-length cDNA isolation, structural characterization and tissue mRNA expression analysis of the common carp (cc) TLR9, MyD88 and TRAF6 gene orthologs. The ccTLR9 open-reading frame (ORF) is predicted to encode a 1064-amino acid (aa) protein. We found that MyD88 and TRAF6 genes are duplicated in common carp. This is the first report of TRAF6 duplication in a vertebrate genome and stronger evidence in support of MyD88 duplication is provided. The ccMyD88a and b ORFs are predicted to encode 288-aa and 284-aa peptides, respectively. They share 91% aa sequence identity between paralogs. The ccTRAF6a and b ORFs are both predicted to encode 543-aa peptides sharing 95% aa sequence identity between paralogs. The ccTLR9 gene is contained in a single large exon. The ccMyD88a and ccMyD88b coding sequences span five exons. The TRAF6b gene spans six exons. PCR amplification to obtain the entire coding sequence of ccTRAF6a gene was not successful. The 2104-bp fragment amplified covers the 3' end of the gene and it contains a partial sequence of one exon and three complete exons. The predicated protein domains of the ccTLR9, ccMyD88 and ccTRAF6 are conserved and resemble orthologs from other vertebrates. Real-time quantitative PCR assays of the ccTLR9, MyD88a and b, and TRAF6a and b gene transcripts in healthy common carp indicated that mRNA expression varied between tissues. Differential expression of duplicate copies were found for ccMyD88 and ccTRAF6 in white and red muscle tissues, suggesting that paralogs may have evolved and attained a new function. The genomic information we describe in this paper provides evidence of sequence and structural conservation of immune response genes in common carp.


Assuntos
Carpas/metabolismo , Clonagem Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor Toll-Like 9/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica/fisiologia , Imunidade Inata , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/genética , Filogenia , Fator 6 Associado a Receptor de TNF/genética , Receptor Toll-Like 9/genética
11.
Fish Shellfish Immunol ; 29(2): 356-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20420915

RESUMO

Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to develop molecular tools for breeding CyHV-3-resistant carp, we have amplified and sequenced 11 candidate genes for viral disease resistance including TLR2, TLR3, TLR4ba, TLR7, TLR9, TLR21, TLR22, MyD88, TRAF6, type I IFN and IL-1beta. For each gene, we initially cloned and sequenced PCR amplicons from 8 to 12 fish (2-3 fish per strain) from the SNP discovery panel. We then identified and evaluated putative SNPs for their polymorphisms in the SNP discovery panel and validated their usefulness for linkage analysis in a full-sib family using the SNaPshot method. Our sequencing results and phylogenetic analyses suggested that TLR3, TLR7 and MyD88 genes are duplicated in the common carp genome. We, therefore, developed locus-specific PCR primers and SNP genotyping assays for the duplicated loci. A total of 48 SNP markers were developed from PCR fragments of the 13 loci (7 single-locus and 3 duplicated genes). Thirty-nine markers were polymorphic with estimated minor allele frequencies of more than 0.1. The utility of the SNP markers was evaluated in one full-sib family and revealed that 20 markers from 9 loci segregated in a disomic and Mendelian pattern and would be useful for linkage analysis.


Assuntos
Carpas/genética , Carpas/imunologia , Mapeamento Cromossômico , Marcadores Genéticos/imunologia , Imunidade Inata/genética , Polimorfismo de Nucleotídeo Único/imunologia , Animais , Carpas/classificação , Dados de Sequência Molecular , Filogenia
12.
Mar Biotechnol (NY) ; 12(2): 121-5, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19936833

RESUMO

The large-scale bacterial artificial chromosome-end sequencing project of Nile tilapia (Oreochromis niloticus) has generated extensive sequence data that allowed the examination of the repeat content in this fish genome and building of a repeat library specific for this species. This library was established based on Tilapiini repeat sequences from GenBank, sequences orthologous to the repeat library of zebrafish in Repbase, and novel repeats detected by genome analysis using MIRA assembler. We estimate that repeats constitute about 14% of the tilapia genome and also give estimates for the occurrence of the different repeats based on the Basic Local Alignment Search Tool searches within the database of known tilapia sequences. The frequent occurrence of novel repeats in the tilapia genome indicates the importance of using the species-specific repeat masker prior to sequence analyses. A web tool based on the RepeatMasker software was designed to assist tilapia genomics.


Assuntos
Ciclídeos/genética , Biblioteca Gênica , Sequências Repetitivas Dispersas/genética , Animais , Cromossomos Artificiais Bacterianos , Biologia Computacional , Genômica , Análise de Sequência de DNA , Software
13.
Genetics ; 174(3): 1573-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16951079

RESUMO

Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas , Processos de Determinação Sexual , Tilápia/genética , Animais , Sequência de Bases , Cromossomos , Marcadores Genéticos , Repetições de Microssatélites , Dados de Sequência Molecular , Polimorfismo Genético
14.
J Immunol ; 176(1): 390-4, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16365432

RESUMO

Carboxyfluorescein diacetate (cFDA)-stained autologous and syngeneic tilapia (Oreochromis aureus) erythrocytes are recognized by effector peripheral blood leukocytes and lysed after a short culture period of 4 h. The hemolysis level was evaluated by measuring the fluorescence of the released cFDA. The degree of lysis of stained target erythrocytes of 60 individuals revealed a trimodal distribution statistically stratified into three groups of low (LR), intermediate (IR), and high (HR) responders. Depletion of the majority of phagocytes from leukocytes lowered the lysis level of HR to that of LR. A highly significant increase of LR cytotoxicity was obtained after the addition of conditioned medium from HR but only in the presence of phagocytes. Genetic analysis of offspring from four crosses (IR x HR, IR x LR, HR x LR, and LR x LR) revealed a quantitative trait locus (QTL) segregating for the level of response linked to markers UNH207 and UNH231 on linkage group 6 of tilapia. Based on segregation analysis of 58 gynogenetic BIU-1 offspring, the distances from the centromere were estimated as 21.5, 11.5, and 9.0 cM for UNH207, UNH231, and the QTL, respectively. It is suggested that 1) self-target recognition and destruction requires both cFDA-altered self-erythrocyte membrane and membrane structures normally present in autologous, syngeneic, and xenogeneic targets; 2) natural cytotoxic cells and/or macrophages are involved in erythrocyte lysis; and 3) the lysis level is codominantly inherited by a QTL segregating on tilapia linkage group 6.


Assuntos
Citotoxicidade Imunológica/genética , Eritrócitos/imunologia , Tilápia/genética , Tilápia/imunologia , Animais , Animais Endogâmicos , Autoantígenos/imunologia , Ligação Genética , Leucócitos/imunologia , Linhagem , Fagócitos/imunologia , Reação em Cadeia da Polimerase , Locos de Características Quantitativas , Característica Quantitativa Herdável
15.
Genetics ; 170(1): 237-44, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15716505

RESUMO

We constructed a second-generation linkage map of tilapia from the F(2) progeny of an interspecific cross between Oreochromis niloticus and Oreochromis aureus. The map reported here contains 525 microsatellite and 21 gene-based markers. It spans 1311 cM in 24 linkage groups, for an average marker spacing of 2.4 cM. We detected associations of sex and red color with markers on linkage group 3. This map will enable mapping and selective breeding of quantitative traits important to the economic culture of tilapia as a food fish and will contribute to the study of closely related cichlids that have undergone explosive adaptive radiation in the lakes of East Africa.


Assuntos
Mapeamento Cromossômico , Tilápia/genética , Animais , Ligação Genética , Marcadores Genéticos , Dados de Sequência Molecular , Polimorfismo Genético , Pigmentação da Pele/genética
16.
J Exp Zool A Comp Exp Biol ; 301(9): 776-82, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15559939

RESUMO

Predation has long been described as one of the major driving forces in evolution. Guppies (Poecilia reticulata) from natural populations exposed to different predation pressures, were found to have different life history traits. Reproductive plasticity in response to direct predation cues has mainly been reported for invertebrates. The goals of the present study were to determine whether exposure to predation cues would induce reproductive phenotypic plasticity in female guppies and to determine whether the effective cues are visual, chemical, or a combination of both. In our first experiment, female guppies exposed to predation cues of the african cichlids Aulonocara nyassae increased their reproductive output by almost two fold, having larger brood-sizes and shorter brood-interval at the first spawn. This effect disappeared in the second spawn in the absence of predators. In the second experiment we found that exposure to the predators induced an increase in the brood-size regardless of whether the cue was: only visual, only chemical, visual and chemical or visual, chemical and tactile. The impacts of these cues were equally powerful on the tested variables and they did not have any cumulative effect. Similar to the results of the first experiment, this effect disappeared in the second spawn, in the absence of predation cues. The present study demonstrates a direct immediate and reversible effect of predation cues on guppy reproduction.


Assuntos
Adaptação Fisiológica , Sinais (Psicologia) , Poecilia/fisiologia , Comportamento Predatório , Reprodução/fisiologia , Análise de Variância , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...