Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 16(1): 171, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580827

RESUMO

OBJECTIVES: RNA sequencing of two organisms in a symbiotic interaction can yield insights that are not found in samples from each organism alone. We present a sequencing dataset focusing on the small RNA fraction from wheat plants (Triticum aestivum) infected with the biotrophic pathogen wheat stem rust fungus (Puccinia graminis f.sp. tritici). Simultaneous small RNA sequencing of this agronomically important crop and its adversary can lead to a better understanding of the role of noncoding RNAs in both plant and fungal biology. DATA DESCRIPTION: Small RNA libraries were constructed from infected and mock-infected plant tissue and sequenced on the Ion Torrent platform. Quality control was performed to ensure sample and data integrity. Using this dataset, researchers can employ previously established methods to map subsets of reads exclusively to each organism's genome. Subsequent analyses can be undertaken to discover microRNAs, predict small RNA targets, and generate hypotheses for further laboratory experiments.


Assuntos
Basidiomycota , MicroRNAs , Análise de Sequência de RNA , Sequência de Bases , Biblioteca Gênica , MicroRNAs/genética , Basidiomycota/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Genomics ; 114(6): 110526, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36427746

RESUMO

The wheat stripe rust fungus (Puccinia striiformis f.sp. tritici) threatens global wheat production. Small RNAs (sRNAs) modulate plant defense induction, and RNA exchange between host and microbe causes cross-kingdom gene silencing, but few examples are known in rust fungi. This study combined sRNA, parallel analysis of RNA ends, and gene expression data to discover sRNA-target pairs on each side of the interaction. Specific wheat 24 nt sRNAs were suppressed, while particular 35 nt fragments were strongly induced upon infection. Wheat sRNAs cleaved fungal transcripts coding for a ribosomal protein and a glycosyl hydrolase effector. Fungal microRNA-like and phased 21 nt sRNAs originated from long inverted repeats near protein coding genes. Fungal sRNAs targeted native transcripts: transposons and kinases; and cross-kingdom transcripts: a wheat nucleotide-binding domain leucine-rich repeat receptor (NLR) and multiple defense-related transcription factor families. This work sheds light on host-microbe coevolution and delivers prospects for developing pathogen control biotechnology.


Assuntos
RNA , Triticum , Triticum/genética
3.
Phytopathology ; 112(5): 1134-1140, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378055

RESUMO

Resistance to the soilborne fungal pathogen Rhizoctonia solani AG-8 is desirable in adapted wheat and barley but remains an elusive trait for prebreeders and breeders. In a previous study, we observed that emergence and root growth was faster in the Rhizoctonia-susceptible 'Scarlet' than in its resistant counterpart, 'Scarlet-Rz1'. The objective of the current study was to quantify early root growth rate and total root length in resistant and susceptible synthetic hexaploid wheat lines, including parental lines and 22 recombinant inbred lines derived crosses between parental lines. In Petri dish assays, the susceptible lines displayed a faster rate of root growth during the first 40 h of root emergence compared with resistant lines. This growth differential was observed in 14-day and 48-h greenhouse assays, in which the total root length of susceptible parental lines was significantly (P < 0.05) greater than that of resistant parental lines. However, the resistant lines sustained less root loss compared with susceptible lines when R. solani AG-8 was present in the soil. Early root growth rate and total root length were not correlated to freezing tolerance in a set of wheat cultivars selected for cold tolerance. The findings indicated that early root growth was negatively correlated to R. solani AG-8 damage in resistant synthetic wheat lines developed for the Pacific Northwest, United States, and suggested that the dynamics of root emergence affect resistance to this soilborne pathogen.


Assuntos
Hordeum , Rhizoctonia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Triticum/genética , Triticum/microbiologia
4.
Front Plant Sci ; 12: 718264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925393

RESUMO

Plants recruit beneficial microbial communities in the rhizosphere that are involved in a myriad of ecological services, such as improved soil quality, nutrient uptake, abiotic stress tolerance, and soil-borne disease suppression. Disease suppression caused by rhizosphere microbiomes has been important in managing soil-borne diseases in wheat. The low heritability of resistance in wheat to soil-borne diseases like Rhizoctonia root rot has made management of these diseases challenging, particularly in direct-seeded systems. Identification of wheat genotypes that recruit rhizosphere microbiomes that promote improved plant fitness and suppression of the pathogen could be an alternative approach to disease management through genetic improvement. Several growth chamber cycling experiments were conducted using six winter wheat genotypes (PI561725, PI561727, Eltan, Lewjain, Hill81, Madsen) to determine wheat genotypes that recruit suppressive microbiomes. At the end of the third cycle, suppression assays were done by inoculating R. solani into soils previously cultivated with specific wheat genotypes to test suppression of the pathogen by the microbiome. Microbiome composition was characterized by sequencing of 16S rDNA (V1-V3 region). Among the growth cycling lengths, 160-day growth cycles exhibited the most distinct rhizosphere microbiomes among the wheat genotypes. Suppression assays showed that rhizosphere microbiomes of different wheat genotypes resulted in significant differences in shoot length (value of p=0.018) and had an impact on the pathogenicity of R. solani, as observed in the reduced root disease scores (value of p=0.051). Furthermore, soils previously cultivated with the ALMT1 isogenic lines PI561725 and PI561727 exhibited better seedling vigor and reduced root disease. Microbiome analysis showed that Burkholderiales taxa, specifically Janthinobacterium, are differentially abundant in PI561727 and PI561725 cultivated soils and are associated with reduced root disease and better growth. This study demonstrates that specific wheat genotypes recruit different microbiomes in growth chamber conditions but the microbial community alterations were quite different from those previously observed in field plots, even though the same soils were used. Genotype selection or development appears to be a viable approach to controlling soil-borne diseases in a sustainable manner, and controlled environment assays can be used to see genetic differences but further work is needed to explain differences seen between growth chamber and field conditions.

5.
Microbiome ; 9(1): 86, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836842

RESUMO

BACKGROUND: Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. RESULTS: In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. CONCLUSIONS: Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity. Video Abstract.


Assuntos
Rizosfera , Microbiologia do Solo , Bactérias/genética , Basidiomycota , Raízes de Plantas , RNA Ribossômico 16S/genética , Rhizoctonia
6.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155830

RESUMO

The timing and duration of flowering are key agronomic traits that are often associated with the ability of a variety to escape abiotic stress such as heat and drought. Flowering information is valuable in both plant breeding and agricultural production management. Visual assessment, the standard protocol used for phenotyping flowering, is a low-throughput and subjective method. In this study, we evaluated multiple imaging sensors (RGB and multiple multispectral cameras), image resolution (proximal/remote sensing at 1.6 to 30 m above ground level/AGL), and image processing (standard and unsupervised learning) techniques in monitoring flowering intensity of four cool-season crops (canola, camelina, chickpea, and pea) to enhance the accuracy and efficiency in quantifying flowering traits. The features (flower area, percentage of flower area with respect to canopy area) extracted from proximal (1.6-2.2 m AGL) RGB and multispectral (with near infrared, green and blue band) image data were strongly correlated (r up to 0.89) with visual rating scores, especially in pea and canola. The features extracted from unmanned aerial vehicle integrated RGB image data (15-30 m AGL) could also accurately detect and quantify large flowers of winter canola (r up to 0.84), spring canola (r up to 0.72), and pea (r up to 0.72), but not camelina or chickpea flowers. When standard image processing using thresholds and unsupervised machine learning such as k-means clustering were utilized for flower detection and feature extraction, the results were comparable. In general, for applicability of imaging for flower detection, it is recommended that the image data resolution (i.e., ground sampling distance) is at least 2-3 times smaller than that of the flower size. Overall, this study demonstrates the feasibility of utilizing imaging for monitoring flowering intensity in multiple varieties of evaluated crops.


Assuntos
Temperatura Baixa , Produtos Agrícolas/anatomia & histologia , Flores/anatomia & histologia , Processamento de Imagem Assistida por Computador , Estações do Ano , Algoritmos , Aprendizado de Máquina , Fenótipo , Tecnologia de Sensoriamento Remoto , Sementes/crescimento & desenvolvimento
7.
J Vis Exp ; (144)2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30799863

RESUMO

Siderophores (low-molecular weight metal chelating compounds) are important in various ecological phenomenon ranging from iron (Fe) biogeochemical cycling in soils, to pathogen competition, plant growth promotion, and cross-kingdom signaling. Furthermore, siderophores are also of commercial interest in bioleaching and bioweathering of metal-bearing minerals and ores. A rapid, cost effective, and robust means of quantitatively assessing siderophore production in complex samples is key to identifying important aspects of the ecological ramifications of siderophore activity, including, novel siderophore producing microbes. The method presented here was developed to assess siderophore activity of in-tact microbiome communities, in environmental samples, such as soil or plant tissues. The samples were homogenized and diluted in a modified M9 medium (without Fe), and enrichment cultures were incubated for 3 days. Siderophore production was assessed in samples at 24, 48, and 72 hours (h) using a novel 96-well microplate CAS (Chrome azurol sulphonate)-Fe agar assay, an adaptation of the traditionally tedious and time-consuming colorimetric method of assessing siderophore activity, performed on individual cultivated microbial isolates. We applied our method to 4 different genotypes/Lines of wheat (Triticum aestivum L.), including Lewjain, Madsen, and PI561725, and PI561727 commonly grown in the inland Pacific Northwest. Siderophore production was clearly impacted by the genotype of wheat, and in the specific types of plant tissues observed. We successfully used our method to rapidly screen for the influence of plant genotype on siderophore production, a key function in terrestrial and aquatic ecosystems. We produced many technical replicates, yielding very reliable statistical differences in soils and within plant tissues. Importantly, the results show the proposed method can be used to rapidly examine siderophore production in complex samples with a high degree of reliability, in a manner that allows communities to be preserved for later work to identify taxa and functional genes.


Assuntos
Monitoramento Ambiental/métodos , Ensaios de Triagem em Larga Escala , Rizosfera , Sideróforos/metabolismo , Microbiologia do Solo , Solo/química , Triticum/metabolismo , Ecossistema
8.
New Phytol ; 222(3): 1561-1572, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30623449

RESUMO

Fungal plant pathogens, like rust-causing biotrophic fungi, secrete hundreds of effectors into plant cells to subvert host immunity and promote pathogenicity on their host plants by manipulating specific physiological processes or signal pathways, but the actual function has been demonstrated for very few of these proteins. Here, we show that the PgtSR1 effector proteins, encoded by two allelic genes (PgtSR1-a and PgtSR1-b), from the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt), suppress RNA silencing in plants and impede plant defenses by altering the abundance of small RNAs that serve as defense regulators. Expression of the PgtSR1s in plants revealed that the PgtSR1s promote susceptibility to multiple pathogens and partially suppress cell death triggered by multiple R proteins. Overall, our study provides the first evidence that the filamentous fungus P. graminis has evolved to produce fungal suppressors of RNA silencing and indicates that PgtSR1s suppress both basal defenses and effector triggered immunity.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Plantas/imunologia , Plantas/microbiologia , Interferência de RNA , Alelos , Arabidopsis/microbiologia , Basidiomycota/genética , Morte Celular , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/metabolismo , Nicotiana/microbiologia , Transgenes
9.
Front Plant Sci ; 10: 1574, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998329

RESUMO

MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus (Puccinia striiformis f. sp. tritici), we identified 182 previously known miRNAs, 91 variants of known miRNAs, and 163 candidate novel wheat miRNAs. Known miRNA loci were usually copied in all three wheat sub-genomes, whereas novel miRNA loci were often specific to a single sub-genome. DESeq2 analysis of differentially expressed microRNAs revealed 23 miRNAs that exhibit cultivar-specific differences. TA078/miR399b showed cultivar-specific differential regulation in response to infection. Using different target prediction algorithms, 145 miRNAs were predicted to target wheat genes, while 69 miRNAs were predicted to target fungal genes. We also confirmed reciprocal expression of TA078/miR399b and tae-miR9664 and their target genes in different treatments, providing evidence for miRNA-mediated regulation during infection. Both known and novel miRNAs were predicted to target fungal genes, suggesting trans-kingdom regulation of gene expression. Overall, this study contributes to the current repository of wheat miRNAs and provides novel information on the yet-uncharacterized roles for miRNAs in the wheat-stripe rust pathosystem.

10.
Methods Mol Biol ; 1848: 139-150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30182235

RESUMO

Biotrophic fungi (Puccinia spp.) cause devastating diseases of wheat and other cereal species globally. The function of large repertories of genes from Puccinia spp. still needs to be discovered to understand the infection process of these obligate parasites, eventually to protect plants from rust diseases. Functional analysis of targeted genes is challenging due to the inherent difficulties with culturing the fungus and transforming the host. RNA interference (RNAi) is a conserved gene regulation process in eukaryotes and known to be a powerful genetic tool in plant biotechnology. More recently, host-induced gene silencing (HIGS) has been developed to assess pathogen gene function in plants. HIGS is an RNAi-based process where double stranded RNA (dsRNA) homologous to a pathogen gene can be expressed in a plant to induce targeted silencing of the pathogen gene. Here we described a detailed HIGS protocol for functional analysis of rust genes from Puccinia species in cereals. As an example we describe an experiment silencing the tryptophan 2-monooxygenase gene (Pgt-IaaM) from Puccinia graminis f. sp. tritici (Pgt) that is involved in virulence to wheat.


Assuntos
Basidiomycota/fisiologia , Inativação Gênica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Vetores Genéticos/genética , Fenótipo , Doenças das Plantas/virologia , Interferência de RNA , Transdução Genética , Triticum/virologia
11.
BMC Genomics ; 19(1): 664, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208837

RESUMO

BACKGROUND: Plant fungal pathogens can rapidly evolve and adapt to new environmental conditions in response to sudden changes of host populations in agro-ecosystems. However, the genomic basis of their host adaptation, especially at the forma specialis level, remains unclear. RESULTS: We sequenced two isolates each representing Puccinia striiformis f. sp. tritici (Pst) and P. striiformis f. sp. hordei (Psh), different formae speciales of the stripe rust fungus P. striiformis highly adapted to wheat and barley, respectively. The divergence of Pst and Psh, estimated to start 8.12 million years ago, has been driven by high nucleotide mutation rates. The high genomic variation within dikaryotic urediniospores of P. striiformis has provided raw genetic materials for genome evolution. No specific gene families have enriched in either isolate, but extensive gene loss events have occurred in both Pst and Psh after the divergence from their most recent common ancestor. A large number of isolate-specific genes were identified, with unique genomic features compared to the conserved genes, including 1) significantly shorter in length; 2) significantly less expressed; 3) significantly closer to transposable elements; and 4) redundant in pathways. The presence of specific genes in one isolate (or forma specialis) was resulted from the loss of the homologues in the other isolate (or forma specialis) by the replacements of transposable elements or losses of genomic fragments. In addition, different patterns and numbers of telomeric repeats were observed between the isolates. CONCLUSIONS: Host adaptation of P. striiformis at the forma specialis level is a complex pathogenic trait, involving not only virulence-related genes but also other genes. Gene loss, which might be adaptive and driven by transposable element activities, provides genomic basis for host adaptation of different formae speciales of P. striiformis.


Assuntos
Adaptação Fisiológica/genética , Basidiomycota/genética , Basidiomycota/fisiologia , Genômica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Evolução Molecular , Hordeum/microbiologia , Sequências Repetitivas de Ácido Nucleico/genética , Telômero/genética , Triticum/microbiologia
12.
Mol Plant Microbe Interact ; 31(11): 1117-1120, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29792772

RESUMO

Puccinia striiformis f. sp. tritici causes devastating stripe (yellow) rust on wheat and P. striiformis f. sp. hordei causes stripe rust on barley. Several P. striiformis f. sp. tritici genomes are available, but no P. striiformis f. sp. hordei genome is available. More genomes of P. striiformis f. sp. tritici and P. striiformis f. sp. hordei are needed to understand the genome evolution and molecular mechanisms of their pathogenicity. We sequenced P. striiformis f. sp. tritici isolate 93-210 and P. striiformis f. sp. hordei isolate 93TX-2, using PacBio and Illumina technologies and RNA sequencing. Their genomic sequences were assembled to contigs with high continuity and showed significant structural differences. The circular mitochondria genomes of both were complete. These genomes provide high-quality resources for deciphering the genomic basis of rapid evolution and host adaptation, identifying genes for avirulence and other important traits, and studying host-pathogen interactions.


Assuntos
Basidiomycota/genética , Genoma Fúngico/genética , Genômica , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Análise de Sequência de RNA
13.
Front Plant Sci ; 9: 110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479358

RESUMO

Goss's wilt (GW) of maize is caused by the Gram-positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn) and has spread in recent years throughout the Great Plains, posing a threat to production. The genetic basis of plant resistance is unknown. Here, a simple method for quantifying disease symptoms was developed and used to select cohorts of highly resistant and highly susceptible lines known as extreme phenotypes (XP). Copy number variation (CNV) analyses using whole genome sequences of bulked XP revealed 141 genes containing CNV between the two XP groups. The CNV genes include the previously identified common rust resistant locus rp1. Multiple Rp1 accessions with distinct rp1 haplotypes in an otherwise susceptible accession exhibited hypersensitive responses upon inoculation. GW provides an excellent system for the genetic dissection of diseases caused by closely related subspecies of C. michiganesis. Further work will facilitate breeding strategies to control GW and provide needed insight into the resistance mechanism of important related diseases such as bacterial canker of tomato and bacterial ring rot of potato.

14.
Front Plant Sci ; 8: 132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243246

RESUMO

Minimal tillage management of extensive crops like wheat can provide significant environmental services but can also lead to adverse interactions between soil borne microbes and the host. Little is known about the ability of the wheat cultivar to alter the microbial community from a long-term recruitment standpoint, and whether this recruitment is consistent across field sites. To address this, nine winter wheat cultivars were grown for two consecutive seasons on the same plots on two different farm sites and assessed for their ability to alter the rhizosphere bacterial communities in a minimal tillage system. Using deep amplicon sequencing of the V1-V3 region of the 16S rDNA, a total of 26,604 operational taxonomic units (OTUs) were found across these two sites. A core bacteriome consisting of 962 OTUs were found to exist in 95% of the wheat rhizosphere samples. Differences in the relative abundances for these wheat cultivars were observed. Of these differences, 24 of the OTUs were found to be significantly different by wheat cultivar and these differences occurred at both locations. Several of the cultivar-associated OTUs were found to correspond with strains that may provide beneficial services to the host plant. Network correlations demonstrated significant co-occurrences for different taxa and their respective OTUs, and in some cases, these interactions were determined by the wheat cultivar. Microbial abundances did not play a role in the number of correlations, and the majority of the co-occurrences were shown to be positively associated. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to determine potential functions associated with OTUs by association with rhizosphere members which have sequenced metagenomics data. Potentially beneficial pathways for nitrogen, sulfur, phosphorus, and malate metabolism, as well as antimicrobial compounds, were inferred from this analysis. Differences in these pathways and their associated functions were found to differ by wheat cultivar. In conclusion, our study suggests wheat cultivars are involved in shaping the rhizosphere by differentially altering the bacterial OTUs consistently across different sites, and these altered bacterial communities may provide beneficial services to the host.

15.
Phytopathology ; 107(1): 75-83, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27503371

RESUMO

Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.


Assuntos
Proteínas de Bactérias/metabolismo , Basidiomycota/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Imunidade Vegetal , Triticum/imunologia , Proteínas de Bactérias/genética , Basidiomycota/fisiologia , Morte Celular , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Supressores , Hipersensibilidade , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Transcriptoma , Triticum/genética , Triticum/microbiologia
16.
BMC Genomics ; 16: 718, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26391470

RESUMO

BACKGROUND: Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is a costly global disease that burdens farmers with yield loss and high fungicide expenses. This sophisticated biotrophic parasite infiltrates wheat leaves and develops infection structures inside host cells, appropriating nutrients while suppressing the plant defense response. Development in most eukaryotes is regulated by small RNA molecules, and the success of host-induced gene silencing technology in Puccinia spp. implies the existence of a functional RNAi system. However, some fungi lack this capability, and small RNAs have not yet been reported in rust fungi. The objective of this study was to determine whether P. striiformis carries an endogenous small RNA repertoire. RESULTS: We extracted small RNA from rust-infected wheat flag leaves and performed high-throughput sequencing. Two wheat cultivars were analyzed: one is susceptible; the other displays partial high-temperature adult plant resistance. Fungal-specific reads were identified by mapping to the P. striiformis draft genome and removing reads present in uninfected control libraries. Sequencing and bioinformatics results were verified by RT-PCR. Like other RNAi-equipped fungi, P. striiformis produces large numbers of 20-22 nt sequences with a preference for uracil at the 5' position. Precise post-transcriptional processing and high accumulation of specific sRNA sequences were observed. Some predicted sRNA precursors possess a microRNA-like stem-loop secondary structure; others originate from much longer inverted repeats containing gene sequences. Finally, sRNA-target prediction algorithms were used to obtain a list of putative gene targets in both organisms. Predicted fungal target genes were enriched for kinases and small secreted proteins, while the list of wheat targets included homologs of known plant resistance genes. CONCLUSIONS: This work provides an inventory of small RNAs endogenous to an important plant pathogen, enabling further exploration of gene regulation on both sides of the host/parasite interaction. We conclude that small RNAs are likely to play a role in regulating the complex developmental processes involved in stripe rust pathogenicity.


Assuntos
Basidiomycota/genética , RNA Fúngico , RNA Interferente Pequeno , Triticum/microbiologia , Mapeamento Cromossômico , Biologia Computacional/métodos , Regulação Fúngica da Expressão Gênica , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Doenças das Plantas/microbiologia , Interferência de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Análise de Sequência de RNA
17.
BMC Genomics ; 16: 579, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26238441

RESUMO

BACKGROUND: The cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi. RESULTS: Approximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development. CONCLUSIONS: Partial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.


Assuntos
Basidiomycota/genética , Inativação Gênica , Interação Gene-Ambiente , Genes Fúngicos , Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glicólise/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Transcrição Gênica , Transcriptoma , Triticum/microbiologia , Triticum/virologia
18.
Front Plant Sci ; 6: 558, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284085

RESUMO

The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat, and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant-microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in translational research.

19.
Pathogens ; 3(2): 459-72, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25437809

RESUMO

Gut microbes are known to play various roles in insects such as digestion of inaccessible nutrients, synthesis of deficient amino acids, and interaction with ecological environments, including host plants. Here, we analyzed the gut microbiome in Hessian fly, a serious pest of wheat. A total of 3,654 high quality sequences of the V3 hypervariable region of the 16S rRNA gene were obtained through 454-pyrosequencing. From these sequences, 311 operational taxonomic units (OTUs) were obtained at the >97% similarity cutoff. In the gut of 1st instar, otu01, a member of Pseudomonas, was predominant, representing 90.2% of total sequences. otu13, an unidentified genus in the Pseudomonadaceae family, represented 1.9% of total sequences. The remaining OTUs were each less than 1%. In the gut of the 2nd instar, otu01 and otu13 decreased to 85.5% and 1.5%, respectively. otu04, a member of Buttiauxella, represented 9.7% of total sequences. The remaining OTUs were each less than 1%. In the gut of the 3rd instar, otu01 and otu13 further decreased to 29.0% and 0%, respectively. otu06, otu08, and otu16, also three members of the Pseudomonadaceae family were 13.2%, 8.6%, and 2.3%, respectively. In addition, otu04 and otu14, two members of the Enterobacteriaceae family, were 4.7% and 2.5%; otu18 and otu20, two members of the Xanthomonadaceae family, were 1.3% and 1.2%, respectively; otu12, a member of Achromobacter, was 4.2%; otu19, a member of Undibacterium, was 1.4%; and otu9, otu10, and otu15, members of various families, were 6.1%, 6.3%, and 1.9%, respectively. The investigation into dynamics of Pseudomonas, the most abundant genera, revealed that its population level was at peak in freshly hatched or 1 day larvae as well as in later developmental stages, thus suggesting a prominent role for this bacterium in Hessian fly development and in its interaction with host plants. This study is the first comprehensive survey on bacteria associated with the gut of a gall midge, and provides a foundation for future studies to elucidate the roles of gut microbes in Hessian fly virulence and biology.

20.
Mol Plant Microbe Interact ; 27(3): 227-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24350783

RESUMO

The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.


Assuntos
Basidiomycota/enzimologia , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Triticum/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Basidiomycota/genética , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Interações Hospedeiro-Patógeno , Ácidos Indolacéticos/análise , Oxigenases de Função Mista/metabolismo , Fenótipo , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Triticum/genética , Triticum/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...