Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4405, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782923

RESUMO

Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.


Assuntos
Células Endoteliais , Proteína 1 de Ligação a Y-Box , Proteína da Zônula de Oclusão-1 , Animais , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Camundongos , Humanos , Células Endoteliais/metabolismo , Grânulos de Estresse/metabolismo , Neovascularização Fisiológica , Vasos Retinianos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Angiogênese , Fatores de Transcrição
2.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463952

RESUMO

Gene transcription is a highly regulated process, and deregulation of transcription factors activity underlies numerous pathologies including cancer. Albeit near four decades of studies have established that the E2F pathway is a core transcriptional network that govern cell division in multi-cellular organisms1,2, the molecular mechanisms that underlie the functions of E2F transcription factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently emerged as important regulators of cell metabolism, autophagy and cell differentiation3-6. While both FOXK1 and FOXK2 interact with the histone H2AK119ub deubiquitinase BAP1 and possess many overlapping functions in normal biology, their specific functions as well as deregulation of their transcriptional activity in cancer is less clear and sometimes contradictory7-13. Here, we show that elevated expression of FOXK1, but not FOXK2, in primary normal cells promotes transcription of E2F target genes associated with increased proliferation and delayed entry into cellular senescence. FOXK1 expressing cells are highly prone to cellular transformation revealing important oncogenic properties of FOXK1 in tumor initiation. High expression of FOXK1 in patient tumors is also highly correlated with E2F gene expression. Mechanistically, we demonstrate that FOXK1, but not FOXK2, is specifically modified by O-GlcNAcylation. FOXK1 O-GlcNAcylation is modulated during the cell cycle with the highest levels occurring during the time of E2F pathway activation at G1/S. Moreover, loss of FOXK1 O-GlcNAcylation impairs FOXK1 ability to promote cell proliferation, cellular transformation and tumor growth. Mechanistically, expression of FOXK1 O-GlcNAcylation-defective mutants results in reduced recruitment of BAP1 to gene regulatory regions. This event is associated with a concomitant increase in the levels of histone H2AK119ub and a decrease in the levels of H3K4me1, resulting in a transcriptional repressive chromatin environment. Our results define an essential role of O-GlcNAcylation in modulating the functions of FOXK1 in controlling the cell cycle of normal and cancer cells through orchestration of the E2F pathway.

3.
Cell Rep ; 42(9): 113084, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37716355

RESUMO

Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.


Assuntos
Leucemia Megacarioblástica Aguda , Animais , Camundongos , Criança , Humanos , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Compostos de Anilina , Sulfonamidas , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Repressoras
4.
Blood Adv ; 7(14): 3485-3500, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36920785

RESUMO

Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Estados Unidos , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Antineoplásicos/uso terapêutico , Transportadores de Ácidos Monocarboxílicos/uso terapêutico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Piruvatos/uso terapêutico
5.
J Exp Clin Cancer Res ; 41(1): 340, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36482393

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is an aggressive hematological cancer resulting from uncontrolled proliferation of differentiation-blocked myeloid cells. Seventy percent of AML patients are currently not cured with available treatments, highlighting the need of novel therapeutic strategies. A promising target in AML is the mammalian target of rapamycin complex 1 (mTORC1). Clinical inhibition of mTORC1 is limited by its reactivation through compensatory and regulatory feedback loops. Here, we explored a strategy to curtail these drawbacks through inhibition of an important effector of the mTORC1signaling pathway, the eukaryotic initiation factor 4A (eIF4A). METHODS: We tested the anti-leukemic effect of a potent and specific eIF4A inhibitor (eIF4Ai), CR-1-31-B, in combination with cytosine arabinoside (araC) or the BCL2 inhibitor venetoclax. We utilized the MOLM-14 human AML cell line to model chemoresistant disease both in vitro and in vivo. In eIF4Ai-treated cells, we assessed for changes in survival, apoptotic priming, de novo protein synthesis, targeted intracellular metabolite content, bioenergetic profile, mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP). RESULTS: eIF4Ai exhibits anti-leukemia activity in vivo while sparing non-malignant myeloid cells. In vitro, eIF4Ai synergizes with two therapeutic agents in AML, araC and venetoclax. EIF4Ai reduces mitochondrial membrane potential (MMP) and the rate of ATP synthesis from mitochondrial respiration and glycolysis. Furthermore, eIF4i enhanced apoptotic priming while reducing the expression levels of the antiapoptotic factors BCL2, BCL-XL and MCL1. Concomitantly, eIF4Ai decreases intracellular levels of specific metabolic intermediates of the tricarboxylic acid cycle (TCA cycle) and glucose metabolism, while enhancing mtROS. In vitro redox stress contributes to eIF4Ai cytotoxicity, as treatment with a ROS scavenger partially rescued the viability of eIF4A inhibition. CONCLUSIONS: We discovered that chemoresistant MOLM-14 cells rely on eIF4A-dependent cap translation for survival in vitro and in vivo. EIF4A drives an intrinsic metabolic program sustaining bioenergetic and redox homeostasis and regulates the expression of anti-apoptotic proteins. Overall, our work suggests that eIF4A-dependent cap translation contributes to adaptive processes involved in resistance to relevant therapeutic agents in AML.


Assuntos
Antineoplásicos , Citarabina , Fator de Iniciação 4A em Eucariotos , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Antineoplásicos/farmacologia
6.
FEBS Open Bio ; 12(5): 959-982, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35302710

RESUMO

Mutations in genes encoding cytochrome c oxidase (mitochondrial complex IV) subunits and assembly factors [e.g., synthesis of cytochrome c oxidase 2 (SCO2)] are linked to severe metabolic syndromes. Notwithstanding that SCO2 is under transcriptional control of tumor suppressor p53, the role of mitochondrial complex IV dysfunction in cancer metabolism remains obscure. Herein, we demonstrate that the loss of SCO2 in HCT116 colorectal cancer cells leads to significant metabolic and signaling perturbations. Specifically, abrogation of SCO2 increased NAD+ regenerating reactions and decreased glucose oxidation through citric acid cycle while enhancing pyruvate carboxylation. This was accompanied by a reduction in amino acid levels and the accumulation of lipid droplets. In addition, SCO2 loss resulted in hyperactivation of the insulin-like growth factor 1 receptor (IGF1R)/AKT axis with paradoxical downregulation of mTOR signaling, which was accompanied by increased AMP-activated kinase activity. Accordingly, abrogation of SCO2 expression appears to increase the sensitivity of cells to IGF1R and AKT, but not mTOR inhibitors. Finally, the loss of SCO2 was associated with reduced proliferation and enhanced migration of HCT116 cells. Collectively, herein we describe potential adaptive signaling and metabolic perturbations triggered by mitochondrial complex IV dysfunction.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Chaperonas Moleculares , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HCT116 , Humanos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Nat Commun ; 12(1): 6984, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848715

RESUMO

Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.


Assuntos
Aminoácidos/metabolismo , Apoptose/fisiologia , Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inanição , Animais , Autoantígenos , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas , Exercício Físico , Fibroblastos , Humanos , Camundongos , Nutrientes , Biossíntese de Proteínas , Proteólise , Estresse Fisiológico , Ubiquitina
9.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547241

RESUMO

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Assuntos
Senescência Celular/fisiologia , NAD/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Linhagem Celular Tumoral , Senescência Celular/genética , Citosol , Glucose/metabolismo , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , NAD/fisiologia , Oxirredução , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo
11.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34168367

RESUMO

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Relação Estrutura-Atividade
12.
Neoplasia ; 23(4): 391-399, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33784591

RESUMO

Notwithstanding that high rates of glucose uptake and glycolysis are common in neoplasia, pharmacological efforts to inhibit glucose utilization for cancer treatment have not been successful. Recent evidence suggests that in addition to classical glucose transporters, sodium-glucose transporters (SGLTs) are expressed by cancers. We therefore investigated the possibility that SGLT inhibitors, which are used in treatment of type 2 diabetes, may exert antineoplastic activity by limiting glucose uptake. We show that the SGLT2 inhibitor canagliflozin inhibits proliferation of breast cancer cells. Surprisingly, the antiproliferative effects of canagliflozin are not affected by glucose availability nor by the level of expression of SGLT2. Canagliflozin reduces oxygen consumption and glutamine metabolism through the citric acid cycle. The antiproliferative effects of canagliflozin are linked to inhibition of glutamine metabolism that fuels respiration, which represents a previously unanticipated mechanism of its potential antineoplastic action.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Canagliflozina/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Glucose/metabolismo , Glutamato Desidrogenase/genética , Ácido Glutâmico/metabolismo , Humanos , Células MCF-7 , Camundongos , Mitocôndrias/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo
13.
Nat Commun ; 11(1): 3520, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665551

RESUMO

PRDM (PRDI-BF1 and RIZ homology domain containing) family members are sequence-specific transcriptional regulators involved in cell identity and fate determination, often dysregulated in cancer. The PRDM15 gene is of particular interest, given its low expression in adult tissues and its overexpression in B-cell lymphomas. Despite its well characterized role in stem cell biology and during early development, the role of PRDM15 in cancer remains obscure. Herein, we demonstrate that while PRDM15 is largely dispensable for mouse adult somatic cell homeostasis in vivo, it plays a critical role in B-cell lymphomagenesis. Mechanistically, PRDM15 regulates a transcriptional program that sustains the activity of the PI3K/AKT/mTOR pathway and glycolysis in B-cell lymphomas. Abrogation of PRDM15 induces a metabolic crisis and selective death of lymphoma cells. Collectively, our data demonstrate that PRDM15 fuels the metabolic requirement of B-cell lymphomas and validate it as an attractive and previously unrecognized target in oncology.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional , Proteínas de Ligação a DNA/genética , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Distribuição Aleatória , Fatores de Transcrição/genética , Transcriptoma/genética
14.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31316753

RESUMO

The mammalian/mechanistic target of rapamycin (mTOR) is a key component of cellular metabolism that integrates nutrient sensing with cellular processes that fuel cell growth and proliferation. Although the involvement of the mTOR pathway in regulating life span and aging has been studied extensively in the last decade, the underpinning mechanisms remain elusive. In this review, we highlight the emerging insights that link mTOR to various processes related to aging, such as nutrient sensing, maintenance of proteostasis, autophagy, mitochondrial dysfunction, cellular senescence, and decline in stem cell function.


Assuntos
Envelhecimento , Autofagia , Senescência Celular , Longevidade , Serina-Treonina Quinases TOR/fisiologia , Animais , Células-Tronco
15.
Cell ; 176(3): 491-504.e21, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30612740

RESUMO

Increased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis in vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity in vitro and protein production in cells. METTL13 and eEF1AK55me2 levels are upregulated in cancer and negatively correlate with pancreatic and lung cancer patient survival. METTL13 deletion and eEF1AK55me2 loss dramatically reduce Ras-driven neoplastic growth in mouse models and in patient-derived xenografts (PDXs) from primary pancreatic and lung tumors. Finally, METTL13 depletion renders PDX tumors hypersensitive to drugs that target growth-signaling pathways. Together, our work uncovers a mechanism by which lethal cancers become dependent on the METTL13-eEF1AK55me2 axis to meet their elevated protein synthesis requirement and suggests that METTL13 inhibition may constitute a targetable vulnerability of tumors driven by aberrant Ras signaling.


Assuntos
Metiltransferases/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Adulto , Idoso , Animais , Carcinogênese , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Feminino , Células HEK293 , Xenoenxertos , Humanos , Lisina/metabolismo , Masculino , Metilação , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator 1 de Elongação de Peptídeos/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Transdução de Sinais
16.
J Mol Endocrinol ; 62(2): R83-R103, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30072418

RESUMO

Notwithstanding that metabolic perturbations and dysregulated protein synthesis are salient features of cancer, the mechanism underlying coordination of cellular energy balance with mRNA translation (which is the most energy consuming process in the cell) is poorly understood. In this review, we focus on recently emerging insights in the molecular underpinnings of the cross-talk between oncogenic kinases, translational apparatus and cellular energy metabolism. In particular, we focus on the central signaling nodes that regulate these processes (e.g. the mechanistic/mammalian target of rapamycin MTOR) and the potential implications of these findings on improving the anti-neoplastic efficacy of oncogenic kinase inhibitors.


Assuntos
Metabolismo Energético , Neoplasias/enzimologia , Neoplasias/metabolismo , Oncogenes , Biossíntese de Proteínas , Proteínas Quinases/metabolismo , Animais , Humanos , Transdução de Sinais
17.
Cell Metab ; 28(6): 817-832.e8, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244971

RESUMO

There is increasing interest in therapeutically exploiting metabolic differences between normal and cancer cells. We show that kinase inhibitors (KIs) and biguanides synergistically and selectively target a variety of cancer cells. Synthesis of non-essential amino acids (NEAAs) aspartate, asparagine, and serine, as well as glutamine metabolism, are major determinants of the efficacy of KI/biguanide combinations. The mTORC1/4E-BP axis regulates aspartate, asparagine, and serine synthesis by modulating mRNA translation, while ablation of 4E-BP1/2 substantially decreases sensitivity of breast cancer and melanoma cells to KI/biguanide combinations. Efficacy of the KI/biguanide combinations is also determined by HIF-1α-dependent perturbations in glutamine metabolism, which were observed in VHL-deficient renal cancer cells. This suggests that cancer cells display metabolic plasticity by engaging non-redundant adaptive mechanisms, which allows them to survive therapeutic insults that target cancer metabolism.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Animais , Biguanidas/farmacologia , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células K562 , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918902

RESUMO

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dinaminas/genética , Dinaminas/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transfecção
19.
RNA Biol ; 14(10): 1299-1305, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28277937

RESUMO

Translation is fundamental for many biologic processes as it enables cells to rapidly respond to stimuli without requiring de novo mRNA synthesis. The mammalian/mechanistic target of rapamycin (mTOR) is a key regulator of translation. Although mTOR affects global protein synthesis, translation of a subset of mRNAs appears to be exceptionally sensitive to changes in mTOR activity. Recent efforts to catalog these mTOR-sensitive mRNAs resulted in conflicting results. Whereas ribosome-profiling almost exclusively identified 5'-terminal oligopyrimidine (TOP) mRNAs as mTOR-sensitive, polysome-profiling suggested that mTOR also regulates translation of non-TOP mRNAs. This inconsistency was explained by analytical and technical biases limiting the efficiency of ribosome-profiling in detecting mRNAs showing differential translation. Moreover, genome-wide characterization of 5'UTRs of non-TOP mTOR-sensitive mRNAs revealed 2 subsets of transcripts which differ in their requirement for translation initiation factors and biologic functions. We summarize these recent advances and their impact on the understanding of mTOR-sensitive translation.


Assuntos
Biossíntese de Proteínas , Ribossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regiões 5' não Traduzidas , Animais , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/química , RNA Mensageiro/genética
20.
Nat Commun ; 7: 12700, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624942

RESUMO

The identification of cancer-associated mutations in the tricarboxylic acid (TCA) cycle enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2) highlights the prevailing notion that aberrant metabolic function can contribute to carcinogenesis. IDH1/2 normally catalyse the oxidative decarboxylation of isocitrate into α-ketoglutarate (αKG). In gliomas and acute myeloid leukaemias, IDH1/2 mutations confer gain-of-function leading to production of the oncometabolite R-2-hydroxyglutarate (2HG) from αKG. Here we show that generation of 2HG by mutated IDH1/2 leads to the activation of mTOR by inhibiting KDM4A, an αKG-dependent enzyme of the Jumonji family of lysine demethylases. Furthermore, KDM4A associates with the DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of mTORC1/2. Depletion of KDM4A decreases DEPTOR protein stability. Our results provide an additional molecular mechanism for the oncogenic activity of mutant IDH1/2 by revealing an unprecedented link between TCA cycle defects and positive modulation of mTOR function downstream of the canonical PI3K/AKT/TSC1-2 pathway.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Astrócitos/metabolismo , Ciclo do Ácido Cítrico , Glioma/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , PTEN Fosfo-Hidrolase/genética , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...