Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 244: 106094, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35134604

RESUMO

Several chemicals have been identified as thyroid hormone axis disrupting chemicals (THADCs) able to interfere with the thyroid hormone system during fetal life and early life stages, thereby impairing neurodevelopment in mammals and inducing development and growth disorders in fish and amphibians. However, identification of THADCs is particularly challenging, and thyroid modalities are currently only assessed in vivo by mammalian and amphibian tests. The aquatic African clawed frog (Xenopus laevis/tropicalis) is the model species of the amphibian test guidelines developed by the OECD and the United States Environmental Protection Agency, but as most European amphibians are semi-aquatic, concern has been raised whether the sensitivity of native European species is comparable to Xenopus. A shortened version of the OEDC test guideline 241 (Larval Amphibian Growth and Development Assay, LAGDA) was used to investigate the effects of two model THADCs on the metamorphosis and thyroid histopathology in the European common frog (Rana temporaria). R. temporaria eggs were collected on the field and exposed till metamorphic climax to sodium perchlorate (11.9-426.5 µg/L perchlorate concentrations) and 6-propylthiouracil (PTU: 1.23-47.7 mg/L). PTU severely delayed metamorphosis and affected several thyroid gland histopathological endpoints at slightly lower concentrations compared to Xenopus. As opposed to what was described in similar Xenopus studies, we observed no effect of perchlorate on the investigated endpoints. Interspecies differences may be linked to mechanisms of action.


Assuntos
Propiltiouracila , Poluentes Químicos da Água , Animais , Antitireóideos/toxicidade , Larva , Metamorfose Biológica , Percloratos/toxicidade , Propiltiouracila/toxicidade , Rana temporaria , Compostos de Sódio , Glândula Tireoide , Poluentes Químicos da Água/toxicidade , Xenopus laevis
2.
Sci Rep ; 6: 21500, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26857019

RESUMO

More difficult tasks are generally regarded as such because they demand greater attention. Echolocators provide rare insight into this relationship because biosonar signals can be monitored. Here we show that bats produce longer terminal buzzes and more sonar sound groups during their approach to prey under presumably more difficult conditions. Specifically, we found Daubenton's bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking stationary prey. Buzz duration and sonar sound groups have been suggested to be independent means by which bats attend to would-be targets and other objects of interest. We suggest that for attacking bats both should be considered as indicators of task difficulty and that the buzz is, essentially, an extended sonar sound group.


Assuntos
Quirópteros/fisiologia , Comportamento Alimentar/fisiologia , Vocalização Animal/fisiologia , Animais
3.
J Exp Biol ; 219(Pt 3): 334-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596537

RESUMO

The big brown bat, Eptesicus fuscus, uses echolocation for orientation and foraging, and scans its surroundings by aiming its sonar beam at obstacles and prey. All call parameters are highly adaptable and determine the bat's acoustic field of view and hence its perception of the echo scene. The intensity (source level) and directionality of the emitted calls directly contribute to the bat's acoustic field of view; however, the source level and directionality of the big brown bat's sonar signals have not been measured in the field. In addition, for bats, navigation and prey capture require that they process several streams of acoustic information. By using stereotypic flight paths in known areas, bats may be able to reduce the sensory processing load for orientation and therefore allocate echo processing resources to prey. Here we recorded the echolocation calls from foraging E. fuscus in the field with a microphone array and estimated call intensity and directionality, based on reconstructed flight trajectories. The source levels were intense with an average maximum source level of 138 dB (root mean square re. 20 µPa at 0.1 m). Furthermore, measurements taken from a subset of calls indicate that the echolocation signals in the field may be more directional than estimated in the laboratory (half-amplitude angle 30 deg at 35 kHz). We also observed that E. fuscus appear to follow stereotypic flight paths, and propose that this could be a strategy to optimize foraging efficiency by minimizing the sensory processing load.


Assuntos
Quirópteros/fisiologia , Ecolocação , Comportamento Alimentar/fisiologia , Voo Animal , Animais , Maryland , Orientação , Comportamento Predatório
4.
J Exp Biol ; 217(Pt 18): 3293-300, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25013105

RESUMO

Related species with different diets are predicted to rely on different cognitive strategies: those best suited for locating available and appropriate foods. Here we tested two predictions of the niche-specific cognitive strategies hypothesis in bats, which suggests that predatory species should rely more on object memory than on spatial memory for finding food and that the opposite is true of frugivorous and nectivorous species. Specifically, we predicted that: (1) predatory bats would readily learn to associate shapes with palatable prey and (2) once bats had made such associations, these would interfere with their subsequent learning of a spatial memory task. We trained free-flying Myotis nattereri to approach palatable and unpalatable insect prey suspended below polystyrene objects. Experimentally naïve bats learned to associate different objects with palatable and unpalatable prey but performed no better than chance in a subsequent spatial memory experiment. Because experimental sequence was predicted to be of consequence, we introduced a second group of bats first to the spatial memory experiment. These bats learned to associate prey position with palatability. Control trials indicated that bats made their decisions based on information acquired through echolocation. Previous studies have shown that bat species that eat mainly nectar and fruit rely heavily on spatial memory, reflecting the relative consistency of distribution of fruit and nectar compared with insects. Our results support the niche-specific cognitive strategies hypothesis and suggest that for gleaning and clutter-resistant aerial hawking bats, learning to associate shape with food interferes with subsequent spatial memory learning.


Assuntos
Quirópteros/fisiologia , Memória/classificação , Memória/fisiologia , Comportamento Predatório/fisiologia , Animais , Feminino , Masculino
5.
Front Physiol ; 5: 168, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860509

RESUMO

To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.

6.
Artigo em Inglês | MEDLINE | ID: mdl-19969100

RESUMO

In seawater fishes, osmotic homeostasis requires uptake of ions and water in the intestine and these processes are governed by the combined trans- and paracellular pathways. The current study examined mRNA expression of two tight junction proteins (claudin-15 and -25 b) predominantly expressed in the intestine of Atlantic salmon. We examined the response in pyloric caecae, middle and posterior intestine to seawater challenge, during smoltification and after injection with osmoregulatory hormones. Seawater (SW) transfer elevated levels of claudin-15 and -25 b while no change was induced throughout the smolt stage. In freshwater, cortisol and growth hormone inhibited claudin-15 expression in the two anterior segments. Claudin-25 b was elevated in all intestinal segments by growth hormone, while cortisol had an inhibitory effect. In seawater, prolactin and cortisol inhibited claudin expression. The data suggest that claudin expression is involved in the reorganisation of intestinal epithelium and possibly change paracellular permeability during SW acclimation. The lack of preparatory change during smoltification suggests that this process is not completed during smolt development. The effects of the tested hormones cannot explain the sum of changes induced by salinity, which, like the smoltification data, suggests the importance of additional factors and possibly contact with the imbibed SW per se.


Assuntos
Aclimatação/efeitos dos fármacos , Claudinas/genética , Água Doce , Trato Gastrointestinal/metabolismo , Hormônios/farmacologia , Salmo salar/genética , Água do Mar , Aclimatação/genética , Animais , Claudinas/metabolismo , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Hidrocortisona/farmacologia , Injeções Intraperitoneais , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmo salar/sangue , Sódio/sangue , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...