Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Front Immunol ; 13: 1032397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439104

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has emerged recently as a standard of care treatment for patients with relapsed or refractory acute lymphoblastic leukemia (ALL) and several subtypes of B-cell non-Hodgkin lymphoma (NHL). However, its use remains limited to highly specialized centers, given the complexity of its administration and its associated toxicities. We previously reported our experience in using a novel Sleeping Beauty (SB) CD19-specific CAR T-cell therapy in the peri-transplant setting, where it exhibited an excellent safety profile with encouraging survival outcomes. We have since modified the SB CD19 CAR construct to improve its efficacy and shorten its manufacturing time. We report here the phase 1 clinical trial safety results. Fourteen heavily treated patients with relapsed/refractory ALL and NHL were infused. Overall, no serious adverse events were directly attributed to the study treatment. Three patients developed grades 1-2 cytokine release syndrome and none of the study patients experienced neurotoxicity. All dose levels were well tolerated and no dose-limiting toxicities were reported. For efficacy, 3 of 8 (38%) patients with ALL achieved CR/CRi (complete remission with incomplete count recovery) and 1 (13%) patient had sustained molecular disease positivity. Of the 4 patients with DLBCL, 2 (50%) achieved CR. The SB-based CAR constructs allow manufacturing of targeted CAR T-cell therapies that are safe, cost-effective and with encouraging antitumor activity.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Linfócitos B , Neoplasias Hematológicas/etiologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/genética
2.
Br J Haematol ; 195(5): 710-721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34490616

RESUMO

Patients with acute myeloid leukaemia (AML) have a five-year survival rate of 28·7%. Natural killer (NK)-cell have anti-leukaemic activity. Here, we report on a series of 13 patients with high-risk R/R AML, treated with repeated infusions of double-bright (CD56bright /CD16bright ) expanded NK cells at an academic centre in Brazil. NK cells from HLA-haploidentical donors were expanded using K562 feeder cells, modified to express membrane-bound interleukin-21. Patients received FLAG, after which cryopreserved NK cells were thawed and infused thrice weekly for six infusions in three dose cohorts (106 -107 cells/kg/infusion). Primary objectives were safety and feasibility. Secondary endpoints included overall response (OR) and complete response (CR) rates at 28-30 days after the first infusion. Patients received a median of five prior lines of therapy, seven with intermediate or adverse cytogenetics, three with concurrent central nervous system (CNS) leukaemia, and one with concurrent CNS mycetoma. No dose-limiting toxicities, infusion-related fever, or cytokine release syndrome were observed. An OR of 78·6% and CR of 50·0% were observed, including responses in three patients with CNS disease and clearance of a CNS mycetoma. Multiple infusions of expanded, cryopreserved NK cells were safely administered after intensive chemotherapy in high-risk patients with R/R AML and demonstrated encouraging outcomes.


Assuntos
Antígeno CD56/análise , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Leucemia Mieloide Aguda/terapia , Receptores de IgG/análise , Adolescente , Adulto , Brasil/epidemiologia , Antígeno CD56/imunologia , Criança , Feminino , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/imunologia , Doença Enxerto-Hospedeiro/etiologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Receptores de IgG/imunologia , Adulto Jovem
3.
Oncogene ; 37(27): 3686-3697, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29622795

RESUMO

The CD56 antigen (NCAM-1) is highly expressed on several malignancies with neuronal or neuroendocrine differentiation, including small-cell lung cancer and neuroblastoma, tumor types for which new therapeutic options are needed. We hypothesized that CD56-specific chimeric antigen receptor (CAR) T cells could target and eliminate CD56-positive malignancies. Sleeping Beauty transposon-generated CD56R-CAR T cells exhibited αßT-cell receptors, released antitumor cytokines upon co-culture with CD56+ tumor targets, demonstrated a lack of fratricide, and expression of cytolytic function in the presence of CD56+ stimulation. The CD56R-CAR+ T cells are capable of killing CD56+ neuroblastoma, glioma, and SCLC tumor cells in in vitro co-cultures and when tested against CD56+ human xenograft neuroblastoma models and SCLC models, CD56R-CAR+ T cells were able to inhibit tumor growth in vivo. These results indicate that CD56-CARs merit further investigation as a potential treatment for CD56+ malignancies.


Assuntos
Antígeno CD56/metabolismo , Glioma/terapia , Neoplasias Pulmonares/terapia , Neuroblastoma/terapia , Receptores de Antígenos Quiméricos/metabolismo , Carcinoma de Pequenas Células do Pulmão/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Antígeno CD56/genética , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Neoplasias Pulmonares/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Neuroblastoma/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Transposases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Proc Natl Acad Sci U S A ; 113(48): E7788-E7797, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849617

RESUMO

Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.


Assuntos
Interleucina-15/metabolismo , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/fisiologia , Animais , Antígenos CD19/metabolismo , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Camundongos , Células Precursoras de Linfócitos T/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
5.
PLoS One ; 11(8): e0159477, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27548616

RESUMO

Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.


Assuntos
Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/transplante , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Caspase 9/genética , Caspase 9/imunologia , Citotoxicidade Imunológica , Modelos Animais de Doenças , Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Subunidade alfa de Receptor de Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Plasmídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Recombinantes de Fusão/genética , Anticorpos de Domínio Único/genética , Linfócitos T/citologia , Linfócitos T/imunologia , Transfecção , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
6.
Mol Imaging Biol ; 18(6): 838-848, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27246312

RESUMO

PURPOSE: We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells. PROCEDURES: We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19+ artificial antigen-presenting cells. RESULTS: After 4 weeks, 90 % of cultured cells exhibited specific killing of CD19+ targets in vitro, could be ablated by ganciclovir, and were detected in vivo by bioluminescent imaging and PET following injection of 2'-deoxy-2'-[18F]fluoro-5-ethyl-1-ß-D-arabinofuranosyl-uracil ([18F]FEAU). CONCLUSION: This is the first report demonstrating the use of SB transposition to generate T cells which may be detected using PET laying the foundation for imaging the distribution and trafficking of T cells in patients treated for B cell malignancies.


Assuntos
Herpesvirus Humano 1/enzimologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Timidina Quinase/metabolismo , Transposases/metabolismo , Animais , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/química , Linhagem Celular , Ganciclovir/farmacologia , Técnicas de Transferência de Genes , Humanos , Luciferases/metabolismo , Camundongos , Compostos Radiofarmacêuticos/química , Transgenes , Xenopus
7.
J Immunother ; 39(5): 205-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27163741

RESUMO

Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Vacinas Anticâncer/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Subpopulações de Linfócitos T/fisiologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Receptores ErbB/imunologia , Engenharia Genética , Glioblastoma/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária , RNA Mensageiro/genética , Especificidade do Receptor de Antígeno de Linfócitos T
8.
Sci Rep ; 6: 21757, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902653

RESUMO

Mismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient's race. Elimination of HLA-A expression in HSC was achieved using artificial zinc finger nucleases designed to target HLA-A alleles. Significantly, these engineered HSCs maintain their ability to engraft and reconstitute hematopoiesis in immunocompromised mice. This introduced loss of HLA-A expression decreases the need to recruit large number of donors to match with potential recipients and has particular importance for patients whose HLA repertoire is under-represented in the current donor pool. Furthermore, the genetic engineering of stem cells provides a translational approach to HLA-match a limited number of third-party donors with a wide number of recipients.


Assuntos
Desoxirribonucleases/genética , Deleção de Genes , Antígenos HLA-A/genética , Transplante de Células-Tronco Hematopoéticas/etnologia , Células-Tronco Hematopoéticas/imunologia , Alelos , Animais , Desoxirribonucleases/metabolismo , Seleção do Doador/ética , Expressão Gênica , Engenharia Genética/métodos , Antígenos HLA-A/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/genética , Antígenos HLA-C/imunologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Acessibilidade aos Serviços de Saúde/ética , Transplante de Células-Tronco Hematopoéticas/ética , Células-Tronco Hematopoéticas/citologia , Teste de Histocompatibilidade , Humanos , Camundongos , Grupos Raciais , Transplante Heterólogo , Transplante Homólogo , Doadores não Relacionados , Dedos de Zinco
9.
Cancer Res ; 75(17): 3505-18, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26330164

RESUMO

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity. T cells with low-affinity nimotuzumab-CAR selectively targeted cells overexpressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high-affinity cetuximab-CAR was not affected by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from nonmalignant cells.


Assuntos
Antígenos de Neoplasias/imunologia , Receptores ErbB/imunologia , Neoplasias/imunologia , Receptores de Antígenos/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Epitopos/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia Adotiva , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Receptores de Antígenos/uso terapêutico , Transdução de Sinais , Linfócitos T/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Clin Cancer Res ; 21(14): 3241-51, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25829402

RESUMO

PURPOSE: The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. EXPERIMENTAL DESIGN: Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. RESULTS: We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. CONCLUSIONS: Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors.


Assuntos
Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Melanoma/virologia , Linfócitos T/transplante , Proteínas Virais/imunologia , Animais , Engenharia Genética/métodos , Humanos , Imuno-Histoquímica , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Immunol Res ; 3(5): 473-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25711538

RESUMO

T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy in Nanowell Grids (TIMING) to provide direct evidence that CD4(+)CAR(+) T cells (CAR4 cells) can engage in multikilling via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8(+)CAR(+) T cells (CAR8 cells) demonstrate that, although CAR4 cells can participate in killing and multikilling, they do so at slower rates, likely due to the lower granzyme B content. Significantly, in both sets of T cells, a minor subpopulation of individual T cells identified by their high motility demonstrated efficient killing of single tumor cells. A comparison of the multikiller and single-killer CAR(+) T cells revealed that the propensity and kinetics of T-cell apoptosis were modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation, and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR(+) T cells to participate in multikilling should be evaluated in the context of their ability to resist activation-induced cell death. We anticipate that TIMING may be used to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR(+) T cells with improved efficacy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptores de Antígenos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Granzimas/imunologia , Humanos , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia
12.
J Immunother ; 37(9): 448-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25304728

RESUMO

PURPOSE: Adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL) is a therapy for metastatic melanoma with response rates of up to 50%. However, the generation of the TIL transfer product is challenging, requiring pooled allogeneic normal donor peripheral blood mononuclear cells (PBMC) used in vitro as "feeders" to support a rapid-expansion protocol. Here, we optimized a platform to propagate TIL to a clinical scale using K562 cells genetically modified to express costimulatory molecules such as CD86, CD137-ligand, and membrane-bound IL-15 to function as artificial antigen-presenting cells (aAPC) as an alternative to using PBMC feeders. EXPERIMENTAL DESIGN: We used aAPC or γ-irradiated PBMC feeders to propagate TIL and measured rates of expansion. The activation and differentiation state was evaluated by flow cytometry and differential gene expression analyses. Clonal diversity was assessed on the basis of the pattern of T-cell receptor usage. T-cell effector function was measured by evaluation of cytotoxic granule content and killing of target cells. RESULTS: The aAPC propagated TIL at numbers equivalent to that found with PBMC feeders, whereas increasing the frequency of CD8 T-cell expansion with a comparable effector-memory phenotype. mRNA profiling revealed an upregulation of genes in the Wnt and stem-cell pathways with the aAPC. The aAPC platform did not skew clonal diversity, and CD8 T cells showed comparable antitumor function as those expanded with PBMC feeders. CONCLUSIONS: TIL can be rapidly expanded with aAPC to clinical scale generating T cells with similar phenotypic and effector profiles as with PBMC feeders. These data support the clinical application of aAPC to manufacture TIL for the treatment of melanoma.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Humanos , Imunoterapia Adotiva , Células K562 , Transcriptoma
13.
Sci Rep ; 4: 4502, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24675806

RESUMO

Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-(64)Cu). This can now be potentially used for (64)Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR(+)SPION(pos) T cells effectively target in vitro CD19(+) lymphoma.


Assuntos
Imagem Molecular/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transferência Adotiva , Antígenos CD19/metabolismo , Sobrevivência Celular , Rastreamento de Células , Meios de Contraste , Eletroporação , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos
14.
Curr Hematol Malig Rep ; 9(1): 50-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24488441

RESUMO

T cells that have been genetically modified, activated, and propagated ex vivo can be infused to control tumor progression in patients who are refractory to conventional treatments. Early-phase clinical trials demonstrate that the tumor-associated antigen (TAA) CD19 can be therapeutically engaged through the enforced expression of a chimeric antigen receptor (CAR) on clinical-grade T cells. Advances in vector design, the architecture of the CAR molecule especially as associated with T-cell co-stimulatory pathways, and understanding of the tumor microenvironment, play significant roles in the successful treatment of medically fragile patients. However, some recipients of CAR(+) T cells demonstrate incomplete responses. Understanding the potential for treatment failure provides a pathway to improve the potency of adoptive transfer of CAR(+) T cells. High throughput single-cell analyses to understand the complexity of the inoculum coupled with animal models may provide insight into the therapeutic potential of genetically modified T cells. This review focuses on recent advances regarding the human application of CD19-specific CAR(+) T cells and explores how their success for hematologic cancers can provide a framework for investigational treatment of solid tumor malignancies.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Antígenos CD19/imunologia , Ensaios Clínicos como Assunto , Engenharia Genética , Neoplasias Hematológicas/imunologia , Humanos
15.
Immunol Rev ; 257(1): 181-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24329797

RESUMO

The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing methods to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CARs) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR(+) T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential.


Assuntos
Antígenos CD19/imunologia , Terapia Genética , Vetores Genéticos/genética , Recombinação Homóloga , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Técnicas de Cultura de Células , Epitopos de Linfócito T/imunologia , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética/métodos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
16.
Blood ; 122(8): 1341-9, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23741009

RESUMO

Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as "non-self" by the recipient. To this end, we developed designer zinc finger nucleases and employed a "hit-and-run" approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-A(neg) T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients.


Assuntos
Desoxirribonucleases/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Transplante de Células-Tronco/métodos , Transplante Homólogo , Antígenos CD19/metabolismo , Sequência de Bases , Diferenciação Celular , Citotoxicidade Imunológica/imunologia , Eletroporação , Células-Tronco Embrionárias/citologia , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Leucócitos Mononucleares/citologia , Dados de Sequência Molecular , Engenharia de Proteínas , Linfócitos T/imunologia , Dedos de Zinco
17.
PLoS One ; 8(5): e64138, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741305

RESUMO

Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼10(10) T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Antígenos CD19/genética , Elementos de DNA Transponíveis/genética , Leucemia de Células B/terapia , Linfócitos T/citologia , Linfócitos T/metabolismo , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD19/imunologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Proliferação de Células , Ensaios Clínicos como Assunto , Técnicas de Cocultura , Elementos de DNA Transponíveis/imunologia , Eletroporação , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoterapia Adotiva/métodos , Interleucina-2/genética , Interleucina-2/imunologia , Células K562 , Leucemia de Células B/imunologia , Leucemia de Células B/patologia , Ativação Linfocitária , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Transposases/genética , Transposases/imunologia
18.
PLoS One ; 8(3): e57838, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469246

RESUMO

Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR(+) T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+) tumor targets. This clone can be used to detect CD19-specific CAR(+) T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR(+) T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.


Assuntos
Anticorpos Monoclonais/biossíntese , Antígenos CD19/imunologia , Proteínas Mutantes Quiméricas/análise , Receptores de Antígenos de Linfócitos T/análise , Anticorpos de Cadeia Única/biossíntese , Linfócitos T/imunologia , Transferência Adotiva , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Antígenos CD19/genética , Ensaios Clínicos como Assunto , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Linfócitos T/citologia , Linfócitos T/transplante
19.
J Immunother ; 36(2): 112-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23377665

RESUMO

The Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electrotransfer of CD19-specific SB DNA plasmids in peripheral blood mononuclear cells and propagation on CD19 artificial antigen presenting cells was used to numerically expand CD3 T cells expressing CAR. By day 28 of coculture, >90% of expanded CD3 T cells expressed CAR. CAR T cells specifically killed CD19 target cells and consisted of subsets expressing biomarkers consistent with central memory, effector memory, and effector phenotypes. CAR T cells contracted numerically in the absence of the CD19 antigen, did not express SB11 transposase, and maintained a polyclonal TCR Vα and TCR Vß repertoire. Quantitative fluorescence in situ hybridization revealed that CAR T cells preserved the telomere length. Quantitative polymerase chain reaction and fluorescence in situ hybridization showed CAR transposon integrated on average once per T-cell genome. CAR T cells in peripheral blood can be detected by quantitative polymerase chain reaction at a sensitivity of 0.01%. These findings lay the groundwork as the basis of our first-in-human clinical trials of the nonviral SB system for the investigational treatment of CD19 B-cell malignancies (currently under 3 INDs: 14193, 14577, and 14739).


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Linfócitos T/transplante , Transposases/genética , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Eletroporação , Técnicas de Transferência de Genes , Glioblastoma/imunologia , Glioblastoma/terapia , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/biossíntese
20.
Mol Ther ; 21(3): 638-47, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23295945

RESUMO

Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR(+)γδ T cells were expanded on CD19(+) artificial antigen-presenting cells (aAPC), which resulted in >10(9) CAR(+)γδ T cells from <10(6) total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR(+)γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19(+) tumor cell lines compared with CAR(neg)γδ T cells. CD19(+) leukemia xenografts in mice were reduced with CAR(+)γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Eletroporação , Humanos , Leucemia/terapia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Transposases/genética , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA