Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Fuels ; 38(11): 9827-9835, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38863686

RESUMO

A crucial aspect of adding an economical and environmental dimension to the upgrading of bio-oils is to develop catalysts with enhanced and prolonged activity. In the present study, the effect of doping δ-alumina (Al2O3) with oxides of cerium (Ce) and lanthanum (La) before thermal treatment was investigated. The performance of such an Al2O3-supported nickel-molybdenum (Ni-Mo) catalyst was evaluated by studying the selectivity for the direct hydrodeoxygenation (HDO) of vanillin to cresol under continuous-flow conditions. In addition, the effect of adding H2S during catalyst activation and/or performance tests was also evaluated. Overall, enhanced performance of the doped NiMo catalyst in the HDO process has been demonstrated and an increased selectivity for cresol via direct HDO observed. The advantage of adding La and Ce is supported by the characterization results, where less sintering and enhanced pore diameter of the doped Al2O3 were observed after thermally inducing the transformation from the δ to θ phases. The improved characteristics and prolonged activity of the doped Al2O3 were also deduced by the lower acidity of the catalyst, which resulted in reduced coke formation during the HDO process.

2.
iScience ; 27(4): 109418, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544571

RESUMO

Lignin is an abundant polyaromatic polymer with a wide range of potential future uses. However, the conversion of lignin into valuable products comes at a cost, and medium- to high-value applications are thus appropriate. Two examples of these are polymers (e.g., as fibers, plasticizers, or additives) and flow batteries (e.g., as redox species). Both of these areas would benefit from lignin-derived molecules with potentially low molecular weight and high (electro)chemical functionality. A promising route to obtain these molecules is oxidative lignin depolymerization, as it enables the formation of targeted compounds with multiple functionalities. An application with high potential in the production of plastics is the synthesis of new sustainable polymers. Employing organic molecules, such as quinones and heterocycles, would constitute an important step toward the sustainability of aqueous flow batteries, and lignin and its derivatives are emerging as redox species, mainly due to their low cost and renewability.

3.
ChemSusChem ; 16(23): e202300492, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37493340

RESUMO

Kraft lignin, a by-product from the production of pulp, is currently incinerated in the recovery boiler during the chemical recovery cycle, generating valuable bioenergy and recycling inorganic chemicals to the pulping process operation. Removing lignin from the black liquor or its gasification lowers the recovery boiler load enabling increased pulp production. During the past ten years, lignin separation technologies have emerged and the interest of the research community to valorize this underutilized resource has been invigorated. The aim of this Review is to give (1) a dedicated overview of the kraft process with a focus on the lignin, (2) an overview of applications that are being developed, and (3) a techno-economic and life cycle asseeements of value chains from black liquor to different products. Overall, it is anticipated that this effort will inspire further work for developing and using kraft lignin as a commodity raw material for new applications undeniably promoting pivotal global sustainability concerns.

4.
Bioresour Technol ; 364: 128004, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162782

RESUMO

Lignin, the most abundant aromatic biopolymer on Earth, is often considered a biorefinery by-product, despite its potential to be valorized into high-added-value chemicals and fuels. In this work, an integrated superstructure-based optimization model was set up and optimized using mixed-integer non-linear programming for the conversion of technical lignin to three main biobased products: aromatic monomers, phenol-formaldehyde resins, and aromatic aldehydes/acids. Several alternative conversion pathways were simultaneously compared to assess the profitability of lignins-based processes by predicting the performance of technologies with different TRL. Upon employing key technologies such as hydrothermal liquefaction, dissolution in solvent, or high-temperature electrolysis, the technical lignins could have a market value of 200 €/t when the market price for aromatic monomers, resins, and vanillin is at least 2.0, 0.8, and 15.0 €/kg, respectively. When lower product selling prices were considered, the aromatic monomers and the resins were not profitable as target products.

5.
ChemSusChem ; 15(20): e202201232, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36004569

RESUMO

The efficient valorization of lignin is crucial if we are to replace current petroleum-based feedstock and establish more sustainable and competitive lignocellulosic biorefineries. Pulp and paper mills and second-generation biorefineries produce large quantities of low-value technical lignin as a by-product, which is often combusted on-site for energy recovery. This Review focuses on the conversion of technical lignins by oxidative depolymerization employing heterogeneous catalysts. It scrutinizes the current literature describing the use of various heterogeneous catalysts in the oxidative depolymerization of lignin and includes a comparison of the methods, catalyst loadings, reaction media, and types of catalyst applied, as well as the reaction products and yields. Furthermore, current techniques for the determination of product yields and product recovery are discussed. Finally, challenges and suggestions for future approaches are outlined.


Assuntos
Lignina , Petróleo , Lignina/metabolismo , Biomassa , Catálise , Estresse Oxidativo
6.
ChemSusChem ; 15(8): e202200085, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35263025

RESUMO

To enable the large-scale use of hydrogen fuel cells for mobility applications, convenient methods for on-board hydrogen storage and release are required. A promising approach is liquid organic hydrogen carriers (LOHCs), since these are safe, available on a large scale, and compatible with existing refueling infrastructure. Usually, LOHC dehydrogenation is carried out in batch-type reactors by transition metals and their complexes and suffers from slow H2 release kinetics and/or inability to reach high energy density by weight, owing to low conversion or the need to dilute the reaction mixture. In this study, a continuous flow reactor is used in combination with a heterogenized iridium pincer complex, which enables a tremendous increase in LOHC dehydrogenation rates. Thus, dehydrogenation of isopropanol is performed in a regime that, in terms of gravimetric energy density, hydrogen generation rate, and precious metal content, is potentially compatible with applications in a fuel-cell powered car.

7.
ACS Catal ; 11(15): 9128-9135, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34476111

RESUMO

Performing fundamental operando catalysis studies under realistic conditions is a key to further develop and increase the efficiency of industrial catalysts. Operando X-ray photoelectron spectroscopy (XPS) experiments have been limited to pressures, and the relevance for industrial applications has been questioned. Herein, we report on the CO oxidation experiment on Pd(100) performed at a total pressure of 1 bar using XPS. We investigate the light-off regime and the surface chemical composition at the atomistic level in the highly active phase. Furthermore, the observed gas-phase photoemission peaks of CO2, CO, and O2 indicate that the kinetics of the reaction during the light-off regime can be followed operando, and by studying the reaction rate of the reaction, the activation energy is calculated. The reaction was preceded by an in situ oxidation study in 7% O2 in He and a total pressure of 70 mbar to confirm the surface sensitivity and assignment of the oxygen-induced photoemission peaks. However, oxygen-induced photoemission peaks were not observed during the reaction studies, but instead, a metallic Pd phase is present in the highly active regime under the conditions applied. The novel XPS setup utilizes hard X-rays to enable high-pressure studies, combined with a grazing incident angle to increase the surface sensitivity of the measurement. Our findings demonstrate the possibilities of achieving chemical information of the catalyst, operando, on an atomistic level, under industrially relevant conditions.

8.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068097

RESUMO

Base-catalyzed depolymerization of black liquor retentate (BLR) from the kraft pulping process, followed by ultrafiltration, has been suggested as a means of obtaining low-molecular-weight (LMW) compounds. The chemical complexity of BLR, which consists of a mixture of softwood and hardwood lignin that has undergone several kinds of treatment, leads to a complex mixture of LMW compounds, making the separation of components for the formation of value-added chemicals more difficult. Identifying the phenolic compounds in the LMW fractions obtained under different depolymerization conditions is essential for the upgrading process. In this study, a state-of-the-art nontargeted analysis method using ultra-high-performance supercritical fluid chromatography coupled to high-resolution multiple-stage tandem mass spectrometry (UHPSFC/HRMSn) combined with a Kendrick mass defect-based classification model was applied to analyze the monomers and oligomers in the LMW fractions separated from BLR samples depolymerized at 170-210 °C. The most common phenolic compound types were dimers, followed by monomers. A second round of depolymerization yielded low amounts of monomers and dimers, while a high number of trimers were formed, thought to be the result of repolymerization.

9.
ChemSusChem ; 13(17): 4382-4384, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32530553

RESUMO

Lignin is a polyaromatic polymer contained in plant cell walls, and it is considered the most abundant noncarbohydrate polymer on Earth. The aromaticity and richness of its functional groups render lignin an attractive starting biomacromolecule for conversion into a variety of value-added products. The development of successful strategies for lignin valorization infers the design of effective depolymerization protocols. Most research on lignin depolymerization has focused on batch-mode processing, whereas only a few studies have investigated such lignin transformations in continuous reactor systems. In this Concept, emerging developments within the concept of continuous lignin processing and the challenges remaining in realizing the efficient valorization of lignin by using this technology are highlighted. A special focus is set on the hydrothermal conversion of technical lignin under continuous-flow conditions, together with suggestions for future research and technology development.

10.
ChemSusChem ; 13(17): 4605-4612, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468723

RESUMO

Lignin is the second most abundant biopolymer in nature and a promising renewable resource for aromatic chemicals. For the understanding of different lignin isolation and conversion processes, the identification of phenolic compounds is of importance. However, given the vast number of possible chemical transformations, the prediction of produced phenolic structures is challenging and a nontargeted analysis method is therefore needed. In this study, a nontargeted analysis method has been developed for the identification of phenolic compounds by using an ultrahigh-performance supercritical fluid chromatography-high-resolution multiple stage tandem mass spectrometry method, combined with a Kendrick mass defect-based classification model. The method is applied to a Lignoboost Kraft lignin (LKL), a sodium lignosulfonate lignin (SLS), and a depolymerized Kraft lignin (DKL) sample. In total, 260 tentative phenolic compounds are identified in the LKL sample, 50 in the SLS sample, and 77 in the DKL sample.

11.
Materials (Basel) ; 12(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718101

RESUMO

An in-depth understanding of the reaction mechanism is required for the further development of Mo-based catalysts for biobased feedstocks. However, fundamental studies of industrial catalysts are challenging, and simplified systems are often used without direct comparison to their industrial counterparts. Here, we report on size-selected bimetallic NiMo nanoparticles as a candidate for a model catalyst that is directly compared to the industrial system to evaluate their industrial relevance. Both the nanoparticles and industrial supported NiMo catalysts were characterized using surface- and bulk-sensitive techniques. We found that the active Ni and Mo metals in the industrial catalyst are well dispersed and well mixed on the support, and that the interaction between Ni and Mo promotes the reduction of the Mo oxide. We successfully produced 25 nm NiMo alloyed nanoparticles with a narrow size distribution. Characterization of the nanoparticles showed that they have a metallic core with a native oxide shell with a high potential for use as a model system for fundamental studies of hydrotreating catalysts for biobased feedstocks.

12.
Membranes (Basel) ; 9(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426318

RESUMO

One way of valorizing the lignin waste stream from the pulp and paper industries is depolymerizing it into low-molecular-mass compounds (LMMC). However, a common problem in the depolymerization of Kraft lignin is the low yields of small aromatic molecules obtained. In the present work, the combination of the repeated depolymerization of lignin and the separation of LMMC from depolymerized lignin to upgrade them into value-added chemicals was studied. In so doing, we investigated the possibility of depolymerizing black liquor retentate (BLR). The base-catalyzed depolymerization of BLR was performed using a continuous flow reactor at 170-210 °C, with a 2 min residence time. The results obtained indicate that BLR can be depolymerized effectively under the experimental conditions. Depolymerized lignin LMMC can be successfully separated by a GR95PP membrane, and thus be protected from repolymerization. Through combining membrane filtration with base-catalyzed depolymerization, more than half of the lignin could be depolymerized into LMMC. Around 46 mg/g of lignin monomers (guaiacol, vanillin, acetovanillone, and acetosyringone), which can potentially be upgraded to high-valued chemicals, were produced. On the basis of our results, we suggest use of a recycling Kraft lignin depolymerization and filtration process for maximizing the production of LMMC under mild alkaline conditions.

13.
Chemistry ; 25(59): 13591-13597, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31418957

RESUMO

A new generation of N-heterocyclic carbene palladium(II) complexes containing vinyl groups in different positions in the backbone of the N-heterocycle have been developed. The fully characterised monomers were copolymerised with divinylbenzene to fabricate robust polymer supported NHC-PdII complexes and these polymers were applied as heterogeneous catalysts in directed C-H halogenation of arenes with a pyridine-type directing group. The catalysts demonstrated medium-high catalytic activity with up to 90 % conversion and 100 % selectivity in chlorination. They are heterogeneous and recyclable (at least six times) with no significant leaching of palladium in batch mode catalysis. The best catalyst was also applied under continuous flow conditions where it disclosed an exceptional activity (90 % conversion) and 100 % selectivity for the mono-halogenated product for at least six days, with no leaching of palladium, no loss of activity and an ability to maintain the original oxidation state of PdII .

14.
Bioresour Technol ; 291: 121799, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31351375

RESUMO

The aim of this work is to develop a novel green solvent based sustainable process to refine lignin into low molecular weight (LMW) and high molecular weight (HMW) fractions. Lignin dispersity reduction were experimentally determined using four solvent mixtures, and benchmarked against eight pure solvents. Data outputs were used for modelling the integrated fractionation process. Dispersity reduction of up to 73% was achieved for the high value LMW fraction. Also, a 90% reduction of energy requirement was achieved with an optimized process incorporating a mechanical vapor compression system. This study showed that solvent mixtures involving water can significantly reduce the cost, environment, health and safety impacts of lignin fractionation. Techno-economic evaluation confirmed the economic viability of a large-scale process processing 50 tonne/day of lignin.


Assuntos
Lignina/química , Fracionamento Químico , Peso Molecular , Solventes
15.
J Colloid Interface Sci ; 546: 163-173, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30913490

RESUMO

A hybrid catalyst consisting of Zr-doped mesoporous silica (Zr-SBA-15) supports with intergrown Cu nanoparticles was used to study the effects of a catalyst's chemical states on CO2 hydrogenation. The chemical state of the catalyst was altered by using tetraethyl orthosilicate (TEOS) or sodium metasilicate (SMS) as the silica precursor in the synthesis of the Zr-SBA-15 framework, and infiltration (Inf) or evaporation induced wetness impregnation (EIWI) as the Cu loading method. As a result, the silica precursor mainly affects the activity of the catalyst whereas the Cu loading method alters the selectivity of the products. TEOS materials exhibit a higher catalytic activity compared to SMS materials due to different Zr dispersion and bonding to the silica matrix. EIWI catalysts display selectivity for methanol formation, while the Inf ones enable methanol conversion to DME. This is correlated to a higher Zr content and lower Cu oxidation states of EIWI prepared catalysts.

16.
Biotechnol Biofuels ; 12: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923564

RESUMO

BACKGROUND: Lignin is a potential feedstock for microbial conversion into various chemicals. However, the microbial degradation rate of native or technical lignin is low, and chemical depolymerization is needed to obtain reasonable conversion rates. In the current study, nine bacterial strains belonging to the Pseudomonas and Rhodococcus genera were evaluated for their ability to grow on alkaline-treated softwood lignin as a sole carbon source. RESULTS: Pseudomonas fluorescens DSM 50090 and Rhodococcus opacus DSM1069 showed the best growth of the tested species on plates with lignin. Further evaluation of P. fluorescens and R. opacus was made in liquid cultivations with depolymerized softwood Kraft lignin (DL) at a concentration of 1 g/L. Size-exclusion chromatography (SEC) showed that R. opacus consumed most of the available lower-molecular weight compounds (approximately 0.1-0.4 kDa) in the DL, but the weight distribution of larger fractions was almost unaffected. Importantly, the consumed compounds included guaiacol-one of the main monomers in the DL. SEC analysis of P. fluorescens culture broth, in contrast, did not show a large conversion of low-molecular weight compounds, and guaiacol remained unconsumed. However, a significant shift in molecular weight distribution towards lower average weights was seen after cultivation with P. fluorescens. CONCLUSIONS: Rhodococcus opacus and P. fluorescens were identified as two potential microbial candidates for the conversion/consumption of base-catalyzed depolymerized lignin, acting on low- and high-molecular weight lignin fragments, respectively. These findings will be of relevance for designing bioconversion of softwood Kraft lignin.

18.
Biotechnol Biofuels ; 11: 240, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202435

RESUMO

BACKGROUND: Lignin is a potential feedstock for microbial conversion into various chemicals. However, the degradation rate of native or technical lignin is low, and depolymerization is needed to obtain reasonable conversion rates. In the current study, base-catalyzed depolymerization-using NaOH (5 wt%)-of softwood Kraft lignin was conducted in a continuous-flow reactor system at temperatures in the range 190-240 °C and residence times of 1 or 2 min. The ability of growth of nine bacterial strains belonging to the genera Pseudomonas and Rhodococcus was tested using the alkaline-treated lignin as a sole carbon source. RESULTS: Pseudomonas fluorescens and Rhodococcus opacus showed the best growth of the tested species on plates with lignin. Further evaluation of P. fluorescens and R. opacus was made in liquid cultivations with depolymerized lignin (DL) at a concentration of 1 g/L. Size exclusion chromatography (SEC) showed that R. opacus consumed most of the available lower molecular weight compounds (approximately 0.1-0.4 kDa) in the DL, but the weight distribution of larger fractions was almost unaffected. Importantly, the consumed compounds included guaiacol-one of the main monomers in the DL. SEC analysis of P. fluorescens culture broth, in contrast, did not show a large conversion of low molecular weight compounds, and guaiacol remained unconsumed. However, a significant shift in molecular weight distribution towards lower average weights was seen. CONCLUSIONS: Rhodococcus opacus and P. fluorescens were identified as two potential microbial candidates for the conversion/consumption of base-catalyzed depolymerized lignin, acting on low and high molecular weight lignin fragments, respectively. These findings will be of relevance for designing bioconversion of softwood Kraft lignin.

19.
Biotechnol Adv ; 34(8): 1318-1346, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27720980

RESUMO

Lignin is a major component of lignocellulosic biomass and as such, it is processed in enormous amounts in the pulp and paper industry worldwide. In such industry it mainly serves the purpose of a fuel to provide process steam and electricity, and to a minor extent to provide low grade heat for external purposes. Also from other biorefinery concepts, including 2nd generation ethanol, increasing amounts of lignin will be generated. Other uses for lignin - apart from fuel production - are of increasing interest not least in these new biorefinery concepts. These new uses can broadly be divided into application of the polymer as such, native or modified, or the use of lignin as a feedstock for the production of chemicals. The present review focuses on the latter and in particular the advances in the biological routes for chemicals production from lignin. Such a biological route will likely involve an initial depolymerization, which is followed by biological conversion of the obtained smaller lignin fragments. The conversion can be either a short catalytic conversion into desired chemicals, or a longer metabolic conversion. In this review, we give a brief summary of sources of lignin, methods of depolymerization, biological pathways for conversion of the lignin monomers and the analytical tools necessary for characterizing and evaluating key lignin attributes.


Assuntos
Biocombustíveis , Lignina , Biocatálise , Biomassa , Biotecnologia , Peso Molecular , Polimerização , Reciclagem
20.
Bioresour Technol ; 161: 263-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24717319

RESUMO

This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes.


Assuntos
Butanóis/síntese química , Fermentação , Ácido Succínico/metabolismo , Butanóis/economia , Catálise , Ácido Succínico/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA