Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sci Data ; 11(1): 561, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816458

RESUMO

Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.


Assuntos
Microbiologia do Ar , DNA Fúngico , Esporos Fúngicos , DNA Fúngico/análise , Fungos/genética , Fungos/classificação , Biodiversidade
2.
Access Microbiol ; 6(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361648

RESUMO

Microbial communities in tundra soils remain largely unknown despite their important roles in the cycling of greenhouse gases. Here, we report 59 non-redundant metagenome-assembled genomes (MAGs) recovered from mineral tundra soils in Rásttigáisá, northern Norway. The MAGs were obtained by clustering contigs according to tetranucleotide frequency and differential coverage and were manually curated to remove contigs with outlying GC content and/or mean coverage. Most MAGs were assigned to the bacterial phyla Candidatus Dormibacterota (n=12), Verrucomicrobiota (n=10), and Acidobacteriota (n=9). All archaeal MAGs (n=4) belong to the genus Candidatus Nitrosopolaris (phylum Thermoproteota). The 59 Rásttigáisá MAGs expand our knowledge of the diversity and ecological roles of tundra microbiomes.

3.
Microb Genom ; 9(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37417735

RESUMO

Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.


Assuntos
Cianobactérias , Metagenômica , Cianobactérias/genética , Lagos/microbiologia , Metagenoma , Sequência de Bases
4.
ISME Commun ; 3(1): 65, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365224

RESUMO

With anticipated expansion of agricultural areas for food production and increasing intensity of pressures stemming from land-use, it is critical to better understand how species respond to land-use change. This is particularly true for microbial communities which provide key ecosystem functions and display fastest responses to environmental change. However, regional land-use effects on local environmental conditions are often neglected, and, hence, underestimated when investigating community responses. Here we show that the effects stemming from agricultural and forested land use are strongest reflected in water conductivity, pH and phosphorus concentration, shaping microbial communities and their assembly processes. Using a joint species distribution modelling framework with community data based on metabarcoding, we quantify the contribution of land-use types in determining local environmental variables and uncover the impact of both, land-use, and local environment, on microbial stream communities. We found that community assembly is closely linked to land-use type but that the local environment strongly mediates the effects of land-use, resulting in systematic variation of taxon responses to environmental conditions, depending on their domain (bacteria vs. eukaryote) and trophic mode (autotrophy vs. heterotrophy). Given that regional land-use type strongly shapes local environments, it is paramount to consider its key role in shaping local stream communities.

5.
ISME J ; 17(4): 514-524, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658394

RESUMO

Closely interacting microbial species pairs (e.g., predator and prey) can become coadapted via reciprocal natural selection. A fundamental challenge in evolutionary ecology is to untangle how coevolution in small species groups affects and is affected by biotic interactions in diverse communities. We conducted an experiment with a synthetic 30-species bacterial community where we experimentally manipulated the coevolutionary history of a ciliate predator and one bacterial prey species from the community. Altering the coevolutionary history of the focal prey species had little effect on community structure or carrying capacity in the presence or absence of the coevolved predator. However, community metabolic potential (represented by per-cell ATP concentration) was significantly higher in the presence of both the coevolved focal predator and prey. This ecosystem-level response was mirrored by community-wide transcriptional shifts that resulted in the differential regulation of nutrient acquisition and surface colonization pathways across multiple bacterial species. Our findings show that the disruption of localized coevolution between species pairs can reverberate through community-wide transcriptional networks even while community composition remains largely unchanged. We propose that these altered expression patterns may signal forthcoming evolutionary and ecological change.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Evolução Biológica , Bactérias/genética , Expressão Gênica , Cadeia Alimentar
6.
Food Microbiol ; 109: 104099, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309426

RESUMO

Marinades are increasingly used to manufacture raw fish products. In corresponding meats, marinating is known to have a major effect on the composition of the microbiome, but the effect of marinating on fish is not known as well. This knowledge gap prompted our study of the microbial ecology and amine formation in marinated and unmarinated modified atmosphere commercially packaged rainbow trout fillet strips. According to our findings, marination increased the maximum concentrations (7-8 log CFU/g) of psychrotrophic bacteria by one logarithmic unit and led to 5 times higher average tyramine concentrations than the corresponding unmarinated product. Instead, trimethylamine concentrations were 30 times higher in the unmarinated product than those in the marinated one. According to the 16 S rRNA sequence analyses, lactic acid bacteria (LAB) predominated in the marinated strips one day after the use-by date, whereas in the unmarinated strips Fusobacteriaceae and LAB were the dominating taxa. Based on the culture-dependent analysis, Latilactobacillus fuchuensis was the prevailing LAB in both products. Since the subset of L. fuchuensis strains tested was able to produce tyramine in vitro, we hypothesise that the use of the acidic marinade activated the production of tyrosine-decarboxylating enzymes in L. fuchuensis and led to the increased tyramine concentrations.


Assuntos
Oncorhynchus mykiss , Animais , Tiramina , Carne/microbiologia , Atmosfera
7.
BMC Genomics ; 23(1): 818, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494615

RESUMO

BACKGROUND: Leuconostoc gelidum and Leuconostoc gasicomitatum have dual roles in foods. They may spoil cold-stored packaged foods but can also be beneficial in kimchi fermentation. The impact in food science as well as the limited number of publicly available genomes prompted us to create pangenomes and perform genomic taxonomy analyses starting from de novo sequencing of the genomes of 37 L. gelidum/L. gasicomitatum strains from our culture collection. Our aim was also to evaluate the recently proposed change in taxonomy as well as to study the genomes of strains with different lifestyles in foods. METHODS: We selected as diverse a set of strains as possible in terms of sources, previous genotyping results and geographical distribution, and included also 10 publicly available genomes in our analyses. We studied genomic taxonomy using pairwise average nucleotide identity (ANI) and calculation of digital DNA-DNA hybridisation (dDDH) scores. Phylogeny analyses were done using the core gene set of 1141 single-copy genes and a set of housekeeping genes commonly used for lactic acid bacteria. In addition, the pangenome and core genome sizes as well as some properties, such as acquired antimicrobial resistance (AMR), important due to the growth in foods, were analysed. RESULTS: Genome relatedness indices and phylogenetic analyses supported the recently suggested classification that restores the taxonomic position of L. gelidum subsp. gasicomitatum back to the species level as L. gasicomitatum. Genome properties, such as size and coding potential, revealed limited intraspecies variation and showed no attribution to the source of isolation. The distribution of the unique genes between species and subspecies was not associated with the previously documented lifestyle in foods. None of the strains carried any acquired AMR genes or genes associated with any known form of virulence. CONCLUSION: Genome-wide examination of strains confirms that the proposition to restore the taxonomic position of L. gasicomitatum is justified. It further confirms that the distribution and lifestyle of L. gelidum and L. gasicomitatum in foods have not been driven by the evolution of functional and phylogenetic diversification detectable at the genome level.


Assuntos
DNA , Leuconostoc , Filogenia , Leuconostoc/genética , Microbiologia de Alimentos
8.
FEMS Microbiol Ecol ; 98(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776963

RESUMO

Due to climate change, increased microbial activity in high-latitude soils may lead to higher greenhouse gas (GHG) emissions. However, microbial GHG production and consumption mechanisms in tundra soils are not thoroughly understood. To investigate how the diversity and functional potential of bacterial and archaeal communities vary across vegetation types and soil layers, we analyzed 116 soil metatranscriptomes from 73 sites in the Finnish sub-Arctic. Meadow soils were characterized by higher pH and lower soil organic matter (SOM) and carbon/nitrogen ratio. By contrast, dwarf shrub-dominated ecosystems had higher SOM and lower pH. Although Actinobacteria, Acidobacteria, Alphaproteobacteria and Planctomycetes were dominant in all communities, there were significant differences at the genus level between vegetation types; plant polymer-degrading groups were more active in shrub-dominated soils than in meadows. Given that climate-change scenarios predict the expansion of shrubs at high latitudes, our results indicate that tundra soil microbial communities harbor potential decomposers of increased plant litter, which may affect the rate of carbon turnover in tundra soils. Additionally, transcripts of methanotrophs were detected in the mineral layer of all soils, which may moderate methane fluxes. This study provides new insights into possible shifts in tundra microbial diversity and activity due to climate change.


Assuntos
Microbiota , Solo , Regiões Árticas , Bactérias/genética , Carbono/análise , Finlândia , Plantas , Solo/química , Microbiologia do Solo , Tundra
9.
Environ Sci Technol ; 56(21): 14994-15006, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775832

RESUMO

Water and sanitation are important factors in the emergence of antimicrobial resistance in low- and middle-income countries. Drug residues, metals, and various wastes foster the spread of antibiotic resistance genes (ARGs) with the help of mobile genetic elements (MGEs), and therefore, rivers receiving contaminants and effluents from multiple sources are of special interest. We followed both the microbiome and resistome of the Code River in Indonesia from its pristine origin at the Merapi volcano through rural and then city areas to the coast of the Indian Ocean. We used a SmartChip quantitative PCR with 382 primer pairs for profiling the resistome and MGEs and 16S rRNA gene amplicon sequencing to analyze the bacterial communities. The community structure explained the resistome composition in rural areas, while the city sampling sites had lower bacterial diversity and more ARGs, which correlated with MGEs, suggesting increased mobility potential in response to pressures from human activities. Importantly, the vast majority of ARGs and MGEs were no longer detectable in marine waters at the ocean entrance. Our work provides information on the impact of different influents on river health as well as sheds light on how land use contributes to the river resistome and microbiome.


Assuntos
Microbiota , Rios , Humanos , Rios/microbiologia , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Genes Bacterianos , Água , Indonésia , Efeitos Antropogênicos , Bactérias/genética
10.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722720

RESUMO

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Assuntos
Microbiota , Pergelissolo , Regiões Árticas , Retroalimentação , Pergelissolo/química , Filogenia , Solo/química
11.
Environ Microbiome ; 17(1): 30, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690846

RESUMO

BACKGROUND: In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. RESULTS: We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then searched for MAGs harbouring genes involved in denitrification, an important process driving N2O emissions. Communities of potential denitrifiers were dominated by microorganisms with truncated denitrification pathways (i.e., lacking one or more denitrification genes) and differed across soil ecosystems. Upland soils showed a strong N2O sink potential and were dominated by members of the Alphaproteobacteria such as Bradyrhizobium and Reyranella. Fens, which had in general net-zero N2O fluxes, had a high abundance of poorly characterized taxa affiliated with the Chloroflexota lineage Ellin6529 and the Acidobacteriota subdivision Gp23. CONCLUSIONS: By coupling an in-depth characterization of microbial communities with in situ measurements of N2O fluxes, our results suggest that the observed spatial patterns of N2O fluxes in the tundra are related to differences in the composition of denitrifier communities.

12.
Am J Clin Nutr ; 115(2): 407-421, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34677583

RESUMO

BACKGROUND: Infants are at a high risk of acquiring fatal infections, and their treatment relies on functioning antibiotics. Antibiotic resistance genes (ARGs) are present in high numbers in antibiotic-naive infants' gut microbiomes, and infant mortality caused by resistant infections is high. The role of antibiotics in shaping the infant resistome has been studied, but there is limited knowledge on other factors that affect the antibiotic resistance burden of the infant gut. OBJECTIVES: Our objectives were to determine the impact of early exposure to formula on the ARG load in neonates and infants born either preterm or full term. Our hypotheses were that diet causes a selective pressure that influences the microbial community of the infant gut, and formula exposure would increase the abundance of taxa that carry ARGs. METHODS: Cross-sectionally sampled gut metagenomes of 46 neonates were used to build a generalized linear model to determine the impact of diet on ARG loads in neonates. The model was cross-validated using neonate metagenomes gathered from public databases using our custom statistical pipeline for cross-validation. RESULTS: Formula-fed neonates had higher relative abundances of opportunistic pathogens such as Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Klebsiella oxytoca, and Clostridioides difficile. The relative abundance of ARGs carried by gut bacteria was 69% higher in the formula-receiving group (fold change, 1.69; 95% CI: 1.12-2.55; P = 0.013; n = 180) compared to exclusively human milk-fed infants. The formula-fed infants also had significantly less typical infant bacteria, such as Bifidobacteria, that have potential health benefits. CONCLUSIONS: The novel finding that formula exposure is correlated with a higher neonatal ARG burden lays the foundation that clinicians should consider feeding mode in addition to antibiotic use during the first months of life to minimize the proliferation of antibiotic-resistant gut bacteria in infants.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/genética , Fórmulas Infantis/microbiologia , Fenômenos Fisiológicos da Nutrição do Lactente , Estudos Transversais , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Modelos Lineares , Masculino
13.
FEMS Microbes ; 3: xtac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37332501

RESUMO

Ammonia-oxidizing archaea (AOA) are key players in the nitrogen cycle of polar soils. Here, we analyzed metagenomic data from tundra soils in Rásttigáisá, Norway, and recovered four metagenome-assembled genomes (MAGs) assigned to the genus 'UBA10452', an uncultured lineage of putative AOA in the order Nitrososphaerales ('terrestrial group I.1b'), phylum Thaumarchaeota. Analysis of other eight previously reported MAGs and publicly available amplicon sequencing data revealed that the UBA10452 lineage is predominantly found in acidic polar and alpine soils. In particular, UBA10452 MAGs were more abundant in highly oligotrophic environments such as mineral permafrost than in more nutrient-rich, vegetated tundra soils. UBA10452 MAGs harbour multiple copies of genes related to cold tolerance, particularly genes involved in DNA replication and repair. Based on the phylogenetic, biogeographic, and ecological characteristics of 12 UBA10452 MAGs, which include a high-quality MAG (90.8% complete, 3.9% redundant) with a nearly complete 16S rRNA gene, we propose a novel Candidatus genus, Ca. Nitrosopolaris, with four species representing clear biogeographic/habitat clusters.

14.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32978125

RESUMO

Microbial food spoilage is a complex phenomenon associated with the succession of the specific spoilage organisms (SSO) over the course of time. We performed a longitudinal metatranscriptomic study on one modified-atmosphere-packaged (MAP) beef product to increase understanding of the longitudinal behavior of a spoilage microbiome during shelf life and beyond. Based on the annotation of the mRNA reads, we recognized three stages related to the active microbiome that were descriptive of the sensory quality of the beef: acceptable product (AP), early spoilage (ES), and late spoilage (LS). Both the 16S RNA taxonomic assignments from the total RNA and functional annotations of the active genes showed that these stages were significantly different from each other. However, the functional gene annotations showed more pronounced differences than the taxonomy assignments. Psychrotrophic lactic acid bacteria (LAB) formed the core of the SSO, according to the transcribed reads. Leuconostoc species were the most abundant active LAB throughout the study period, whereas the transcription activity of Streptococcaceae (mainly Lactococcus) increased after the product had spoiled. In the beginning of the experiment, the community managed environmental stress by cold-shock responses, which were followed by expression of the genes involved in managing oxidative stress. Glycolysis, the pentose phosphate pathway, and pyruvate metabolism were active throughout the study at a relatively stable level. However, the proportional transcription activities of the enzymes in these pathways changed over time.IMPORTANCE It is generally known which organisms are the typical SSO in foods, whereas the actively transcribed genes and pathways during microbial succession are poorly understood. This knowledge is important, since better approaches to food quality evaluation and shelf life determination are needed. Therefore, we conducted this study to find longitudinal markers that are connected to quality deterioration in a MAP beef product. This kind of RNA marker could be used to develop novel types of rapid quality analysis tools in the future. New tools are needed, since even though SSO can be detected and their concentrations determined using the current microbiological methods, results from these analyses cannot predict how close in time a spoilage community is to the production of clear sensory defects. The main reason for this is that the species composition of a spoilage community does not change dramatically during late shelf life, whereas the ongoing metabolic activities lead to the development of notable sensory deterioration.


Assuntos
Bactérias/isolamento & purificação , Microbiologia de Alimentos , Perfilação da Expressão Gênica , Carne/microbiologia , Microbiota , Transcriptoma , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Fermentação
15.
Int J Food Microbiol ; 313: 108379, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31675541

RESUMO

Lactobacillus algidus is a meat spoilage bacterium often dominating the bacterial communities on chilled, packaged meat. Yet, L. algidus strains are rarely recovered from meat, and only few studies have focused on this species. The main reason limiting detailed studies on L. algidus is related to its poor growth on the media routinely used for culturing food spoilage bacteria. Thus, our study sought to develop reliable culture media for L. algidus to enable its recovery from meat, and to allow subculturing and phenotypic analyses of the strains. We assessed the growth of meat-derived L. algidus strains on common culture media and their modifications, and explored the suitability of potential media for the recovery of L. algidus from meat. Moreover, we determined whether 12 meat-derived L. algidus strains selected from our culture collection produce biogenic amines that may compromise safety or quality of meat, and finally, sequenced de novo and annotated the genomes of two meat-derived L. algidus strains to uncover genes and metabolic pathways relevant for phenotypic traits observed. MRS agar supplemented with complex substances (peptone, meat and yeast extract, liver digest) supported the growth of L. algidus, and allowed the recovery of new L. algidus isolates from meat. However, most strains grew poorly on standard MRS agar and on general-purpose media. In MRS broth, most strains grew well but a subset of strains required supplementation of MRS broth with additional cysteine. Supplementation of MRS broth with catalase allowed growth in aerated cultures suggesting that the strains produced hydrogen peroxide when grown aerobically. The strains tested (n = 12) produced ornithine from arginine and putrescine from agmatine, and two strains produced tyramine from tyrosine. Our findings reveal that L. algidus populations are underestimated if routine culture protocols are applied, and prompt concerns that L. algidus may generate tyramine or putrescine in meat or fermented meat products.


Assuntos
Lactobacillus/crescimento & desenvolvimento , Produtos da Carne/microbiologia , Animais , Aminas Biogênicas/análise , Aminas Biogênicas/metabolismo , Bovinos , Meios de Cultura/metabolismo , Fermentação , Lactobacillus/metabolismo , Produtos da Carne/análise , Putrescina/análise , Putrescina/metabolismo , Suínos
16.
Int J Food Microbiol ; 293: 44-52, 2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30639999

RESUMO

Microbial (colony counts, 16S rRNA gene amplification), chemical (pH, 1H NMR spectroscopy) and sensory changes in raw Atlantic Salmon (Salmo salar) and tuna (Thunnus albacares) fillets stored under vacuum at 3 °C were evaluated over a period of 12 days. Both species of fish are globally important and among the ten most consumed fishes in the world. Although the sensory analyses showed a decrease in the quality of both fish species, only the salmon fillets were considered spoiled at the end of the storage period. In salmon, trimethylamine was the main spoilage product and bacterial colony counts reached an average of 7.3 log10 cfu/g. The concentration of glucose decreased and the concentration of organic acids increased during storage revealing glucose fermentation. Photobacterium was the dominating genus in the salmon studied. In the tuna studied, the bacterial colony counts reached only an average of 4.6 log10 cfu/g. The dominating bacteria in tuna were Pseudomonas spp. Glucose levels did not decrease, suggesting that amino acids and lactate most likely acted as carbon sources for bacteria in tuna. In conclusion, the study revealed that salmon was clearly a more perishable fish than tuna.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos , Armazenamento de Alimentos , Metabolômica , Salmo salar/microbiologia , Atum/microbiologia , Animais , Carga Bacteriana , Temperatura Baixa , Contagem de Colônia Microbiana , Comportamento do Consumidor , DNA Bacteriano/isolamento & purificação , Embalagem de Alimentos , Humanos , Espectroscopia de Ressonância Magnética , Photobacterium/isolamento & purificação , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação , Alimentos Marinhos/microbiologia , Análise de Sequência de DNA , Paladar , Vácuo
17.
Commun Biol ; 1: 35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271921

RESUMO

Low concentrations of antibiotics have numerous effects on bacteria. However, it is unknown whether ecological factors such as trophic interactions and spatial structuring influence the effects of low concentrations of antibiotics on multispecies microbial communities. Here, we address this question by investigating the effects of low antibiotic concentration on community composition and horizontal transfer of an antibiotic resistance plasmid in a 62-strain bacterial community in response to manipulation of the spatial environment and presence of predation. The strong effects of antibiotic treatment on community composition depend on the presence of predation and spatial structuring that have strong community effects on their own. Overall, we find plasmid transfer to diverse recipient taxa. Plasmid transfer is likely to occur to abundant strains, occurs to a higher number of strains in the presence of antibiotic, and also occurs to low-abundance strains in the presence of spatial structures. These results fill knowledge gaps concerning the effects of low antibiotic concentrations in complex ecological settings.

18.
Nat Commun ; 9(1): 3891, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250208

RESUMO

The infant gut microbiota has a high abundance of antibiotic resistance genes (ARGs) compared to adults, even in the absence of antibiotic exposure. Here we study potential sources of infant gut ARGs by performing metagenomic sequencing of breast milk, as well as infant and maternal gut microbiomes. We find that fecal ARG and mobile genetic element (MGE) profiles of infants are more similar to those of their own mothers than to those of unrelated mothers. MGEs in mothers' breast milk are also shared with their own infants. Termination of breastfeeding and intrapartum antibiotic prophylaxis of mothers, which have the potential to affect microbial community composition, are associated with higher abundances of specific ARGs, the composition of which is largely shaped by bacterial phylogeny in the infant gut. Our results suggest that infants inherit the legacy of past antibiotic consumption of their mothers via transmission of genes, but microbiota composition still strongly impacts the overall resistance load.


Assuntos
Antibacterianos/efeitos adversos , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Sequências Repetitivas Dispersas/genética , Leite Humano/microbiologia , Antibioticoprofilaxia/efeitos adversos , Aleitamento Materno , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente , Herança Materna , Metagenômica , Filogenia , Fatores de Tempo
19.
Front Genet ; 9: 312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154827

RESUMO

Experimental microbial ecology and evolution have yielded foundational insights into ecological and evolutionary processes using simple microcosm setups and phenotypic assays with one- or two-species model systems. The fields are now increasingly incorporating more complex systems and exploration of the molecular basis of observations. For this purpose, simplified, manageable and well-defined multispecies model systems are required that can be easily investigated using culturing and high-throughput sequencing approaches, bridging the gap between simpler and more complex synthetic or natural systems. Here we address this need by constructing a completely synthetic 33 bacterial strain community that can be cultured in simple laboratory conditions. We provide whole-genome data for all the strains as well as metadata about genomic features and phenotypic traits that allow resolving individual strains by amplicon sequencing and facilitate a variety of envisioned mechanistic studies. We further show that a large proportion of the strains exhibit coexistence in co-culture over serial transfer for 48 days in the absence of any experimental manipulation to maintain diversity. The constructed bacterial community can be a valuable resource in future experimental work.

20.
FEMS Microbiol Ecol ; 94(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514229

RESUMO

Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal/genética , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Genes Bacterianos/genética , Especificidade de Hospedeiro , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...