Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 3440-3450, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297564

RESUMO

Surface enhanced Raman spectroscopy (SERS) is one of the most sensitive biosensing techniques that offers label free detection for a variety of applications. Generally, SERS spectroscopy is performed on nano-functionalized planar substrates with plasmonic structures or colloidal nanoparticles. Recently, photonic crystal fibers (PCFs) have gained great interest for SERS based bio sensing applications due to the immense advantages such as improved sensitivity, flexibility and remote sensing capability that it offers compared to the planar substrates. However, the use of PCF based biosensors demand the alignment of it under a microscope, which can affect the reliability of SERS measurements and could be restrictive for practical end use applications. Herein, we aim to develop a tapered suspended core PCF fiber (Tapered-SuC-PCF) that represents an improvement in coupling efficiency and measurement reliability as well as it opens the way to the development of an easy-to-use bio-sensing probes with a plug and play option with conventional Raman spectrometers. We have fabricated several samples of the optimized tapered-SuC-PCF and demonstrated its superior SERS performance compared to standard SuC-PCF fibers with 2 µm core diameter. An excellent SERS measurement reliability is demonstrated using such a fiber in a plug and play type system demonstrating its versatility for practical end use applications.

2.
Opt Lett ; 48(10): 2531-2534, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186700

RESUMO

We report continuous measurements of the transmission spectrum of a fiber loop mirror interferometer composed of a Panda-type polarization-maintaining (PM) optical fiber during the diffusion of dihydrogen (H2) gas into the fiber. Birefringence variation is measured through the wavelength shift of the interferometer spectrum when the PM fiber is inserted into a gas chamber with H2 concentration from 1.5 to 3.5 vol.% at 75 bar and 70°C. The measurements correlated with simulation results of H2 diffusion into the fiber lead to a birefringence variation of -4.25 × 10-8 per mol m-3 of H2 concentration in the fiber, with a birefringence variation as low as -9.9×10-8 induced by 0.031 µmol m-1 of H2 dissolved in the single-mode silica fiber (for 1.5 vol.%). These results highlight a modification of the strain distribution in the PM fiber, induced by H2 diffusion, leading to a variation of the birefringence that could deteriorate the performances of fiber devices or improve H2 gas sensors.

3.
Analyst ; 148(7): 1514-1523, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36896767

RESUMO

Early diagnosis of oral cancer is critical to improve the survival rate of patients. Raman spectroscopy, a non-invasive spectroscopic technique, has shown potential in identifying early-stage oral cancer biomarkers in the oral cavity environment. However, inherently weak signals necessitate highly sensitive detectors, which restricts widespread usage due to high setup costs. In this research, the fabrication and assembly of a customised Raman system that can adapt three different configurations for the in vivo and ex vivo analysis is reported. This novel design will help in reducing the cost required to have multiple Raman instruments specific for a given application. First, we demonstrated the capability of a customized microscope for acquiring Raman signals from a single cell with high signal-to-noise ratio. Generally, when working with liquid samples with low concentration of analytes (such as saliva) under a microscope, excitation light interacts with a small sample volume, which may not be representative of whole sample. To address this issue, we have designed a novel long-path transmission set-up, which was found to be sensitive towards low concentration of analytes in aqueous solution. We further demonstrated that the same Raman system can be incorporated with the multimodal fibre optical probe to collect in vivo data from oral tissues. In summary, this flexible, portable, multi-configuration Raman system has the potential to provide a cost-effective solution for complete screening of precancer oral lesions.


Assuntos
Neoplasias Bucais , Humanos , Neoplasias Bucais/diagnóstico , Razão Sinal-Ruído , Análise Espectral Raman/métodos , Microscopia
4.
Biosensors (Basel) ; 12(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35884260

RESUMO

The detection for small molecules with low concentrations is known to be challenging for current chemical and biological sensors. In this work, we designed a highly sensitive plasmonic biosensor based on the symmetric metal cladding plasmonic waveguide (SMCW) structure for the detection of biomolecules. By precisely designing the configuration and tuning the thickness of the guiding layer, ultra-high order modes can be excited, which generates a steep phase change and a large position shift from the Goos−Hänchen effect (with respect to refractive index changes). This position shift is related to the sharpness of the optical phase change from the reflected signal of the SPR sensing substrate and can be directly measured by a position sensor. Based on our knowledge, this is the first experimental study done using this configuration. Experimental results showed a lateral position signal change > 90 µm for glycerol with a sensitivity figure-of-merit of 2.33 × 104 µm/RIU and more than 15 µm for 10−4 M biotin, which is a low molecular weight biomolecule (less than 400 Da) and difficult to be detected with traditional SPR sensing techniques. Through integrating the waveguide with a guiding layer, a strong improvement in the electric field, as well as sensitivity have been achieved. The lateral position shift has been further improved from 14.17 µm to 284 µm compared with conventional SPR substrate with 50 nm gold on single side. The as-reported sensing technique allows for the detection of ultra-small biological molecules and will play an important role in biomedical and clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais/métodos , Biotina/química , Ouro/química , Refratometria , Ressonância de Plasmônio de Superfície/métodos
5.
Nanomicro Lett ; 13(1): 96, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138312

RESUMO

HIGHLIGHTS: A zero-reflection-induced phase singularity is achieved through precisely controlling the resonance characteristics using two-dimensional nanomaterials. An atomically thin nano-layer having a high absorption coefficient is exploited to enhance the zero-reflection dip, which has led to the subsequent phase singularity and thus a giant lateral position shift. We have improved the detection limit of low molecular weight molecules by more than three orders of magnitude compared to current state-of-art nanomaterial-enhanced plasmonic sensors. Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 µm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10-15 mol L-1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.

6.
Opt Express ; 28(16): 23609-23619, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752354

RESUMO

Recently, surface enhanced Raman spectroscopy (SERS)-active photonic crystal fiber (PCFs) probes have gained great interest for biosensing applications due to the tremendous advantages it has over the conventional planar substrate based SERS measurements, with improvements on the detection sensitivity and reliability in measurements. So far, two main approaches were employed to get the analyte molecule in the vicinity of nanoparticles (NPs) inside PCFs in order to achieve the SERS effect. In the first case, analyte and NPs are pre-mixed and injected inside the holes of the PCF prior to the measurement. In the second approach, controlled anchoring of the NPs inside the inner walls of the PCF was achieved prior to the incorporation of the analyte. Although many studies have been conducted using one configuration or the other, no clear trend is emerging on which one would be the best suited for optimizing the biosensing properties offered by SERS active-PCF. In this paper, we investigate the performances of both configurations along with their interplays with the core size of the PCF probe. We have fabricated several samples of a standard PCF design with different core sizes, and SERS measurements of a standard Raman-active molecule are realized in the same conditions for enabling direct comparisons of the SERS intensity and measurement reliabilities between each configuration, yielding clear directions on the optimization of the SERS-active PCF probe. We envision that this study will pave the way for next-generation clinical biosensors for body fluid analysis, as it exhibits high sensitivity and excellent reliability.

7.
Sensors (Basel) ; 20(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846969

RESUMO

Polarization-maintaining fibers (PMFs) have always received great attention in fiber optic communication systems and components which are sensitive to polarization. Moreover, they are widely applied for high-accuracy detection and sensing devices, such as fiber gyroscope, electric/magnetic sensors, multi-parameter sensors, and so on. Here, we demonstrated the combination of a fiber Bragg grating (FBG) and Sagnac interference in the same section of a new type of PANDA-structure PMF for the simultaneous measurement of axial strain and temperature. This specialty PMF features two stress-applied parts made of lanthanum-aluminum co-doped silicate (SiO2-Al2O3-La2O3, SAL) glass, which has a higher thermal expansion coefficient than borosilicate glass used commonly in commercial PMFs. Furthermore, the FBG inscribed in this SAL PMF not only aids the device in discriminating strain and temperature, but also calibrates the phase birefringence of the SAL PMF more precisely thanks to the much narrower bandwidth of grating peaks. By analyzing the variation of wavelength interval between two FBG peaks, the underlying mechanism of the phase birefringence responding to temperature and strain is revealed. It explains exactly the sensing behavior of the SAL PMF based Sagnac interference dip. A numerical simulation on the SAL PMF's internal stress and consequent modal effective refractive indices was performed to double confirm the calibration of fiber's phase birefringence.

8.
Opt Lett ; 45(14): 3997-4000, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667337

RESUMO

Recent progress in optical fiber Mach-Zehnder interferometers (MZIs) has gained many achievements in sensing application. However, the strain sensitivity of optical fiber MZIs is low due to the low elasto-optical coefficient of silica. In this Letter, we propose and demonstrate a method to modulate the guided modes in an MZI based on a special hollow core microstructured optical fiber (HCMOF) by fabricating periodical deformations. Specifically, periodical deformations reduce the extinction ratio of the transmission spectrum. Furthermore, the axial tension modulates these periodical deformations, leading to the enhanced strain sensitivity in comparison to the configuration without deformations. In our experiment, the strain response from 0 to 1000µÎµ is obtained with a sensitivity of 0.00359dB/µÎµ corresponding to an improvement of 13 times compared with a sensor based on same HCMOF without deformations.

9.
Appl Opt ; 59(6): 1641-1647, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225668

RESUMO

Developments toward the implementation of a terahertz pulse imaging system within a guided reflectometry configuration are reported. Two photoconductive antennas patterned on the same LT-GaAs active layer in association with a silica pipe hollow-core waveguide allowed us to obtain a guided optics-free imager. Besides working in a pulsed regime, the setup does not require additional optics to focus and couple the terahertz pulses into the waveguide core, simplifying the global implementation in comparison with other reported guided terahertz reflectometry systems. The system is qualified for imaging purposes by means of a 1951 USAF resolution test chart. An image resolution, after a 53 mm propagation length, by about 0.707 LP/mm over the 400-550 GHz integrated frequency band, was obtained, thus providing a promising basis to pursue efforts toward compact guided pulse imagers for sample inspection within the terahertz range.

10.
Opt Lett ; 45(4): 1017-1020, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058530

RESUMO

The performance of sensors, including optical fiber sensors, is commonly limited by the tradeoff between a large dynamic range and a high resolution. In this Letter, in order to optimize both, we propose an inline multimode interferometer sensor based on a suspended-core microstructured optical fiber. Due to the existence of multiple pairs of mode interferences, the transmission spectrum of the interferometer consists of dense fringes modulated by a lower envelope. Since these mode interferences take place in the uniform material with the same length, the dense fringes and the lower envelope have an identical sensing response without crosstalk. Hence, the sensor integrates the large dynamic range of the lower envelope and the high resolution of the dense fringes. Strain-sensing performance is investigated to validate the characteristic of the large dynamic range and the high resolution of the proposed sensor. The dynamic range, theoretically 0-9200 µÉ›, is 12 times larger than for the dense fringes, and the resolution is 17.5 times higher than for the lower envelope.

11.
J Biophotonics ; 13(3): e201960120, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31814313

RESUMO

Conventionally Surface-enhanced Raman spectroscopy (SERS) is realized by adsorbing analytes onto nano-roughened planar substrate coated with noble metals (silver or gold) or their colloidal nanoparticles (NPs). Nanoscale irregularities in such substrates/NPs could lead to SERS sensors with poor reproducibility and repeatability. Herein, we demonstrate a suspended core photonic crystal fiber (PCF) based SERS sensor with extremely high reproducibility and repeatability in measurement with a relative SD of only 1.5% and 4.6%, respectively, which makes it more reliable than any existing SERS sensor platforms. In addition, our platform could improve the detection sensitivity owing to the increased interaction area between the guided light and the analyte, which is incorporated into the holes that runs along the length of the PCF. Numerical calculation established the significance of the interplay between light coupling efficiency and evanescent field distribution, which could eventually determine the sensitivity and reliability of the developed SERS active-PCF sensor. As a proof of concept, using this sensor, we demonstrated the detection of haptoglobin, a biomarker for ovarian cancer, contained within the ovarian cyst fluid, which facilitated in differentiating the stages of cancer. We envision that with necessary refinements, this platform could potentially be translated as a next-generation highly sensitive SERS-active opto-fluidic biopsy needle for the detection of biomarkers in body fluids.


Assuntos
Nanopartículas Metálicas , Neoplasias Ovarianas , Biomarcadores Tumorais , Líquido Cístico , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Reprodutibilidade dos Testes , Análise Espectral Raman
12.
Opt Express ; 27(21): 30629-30638, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684307

RESUMO

Recent progress in designing optimized microstructured optical fiber spreads an application scenario of optical fiber sensing. Here, we investigate the bending measurement based on a specially designed hollow core photonic crystal fiber (HC-PCF). Numerical simulation indicates that the bending sensitivity is mainly determined by the diameter of the hollow core and also depends on the coupled modes. Experimentally, a direction-independent bending sensor is fabricated by sandwiching a segment of specially designed HC-PCF into two segments of single mode fibers. The bending sensitivity of our device is improved 10 times by increasing the diameter of the hollow core. Bending measurement is validated at two orthogonal planes. The maximum sensitivity up to 2.8 nm/deg is obtained at 14° bending angle. Additionally, a low thermal sensitivity of 2.5 pm/°C is observed from 18°C to 1000°C. The sensor is robust, easy to fabricate and cost effective, which is promising in the field of small-angle bending measurement under a large temperature range.

13.
Opt Lett ; 44(19): 4690-4693, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568418

RESUMO

We demonstrate a widely tunable Q-switched dual-wavelength fiber laser emitting synchronized pulses in the 2 µm spectral range. Owing to the use of a Tm-doped rod-type fully aperiodic large pitch fiber, together with an acousto-optic modulator and two volume Bragg gratings (VBGs), the wavelength separation was shown to be continuously tunable from 1 to 120 nm (∼0.1-10 THz). A peak power higher than 8 kW was demonstrated over the whole tuning range for a repetition rate (RR) of 1 KHz and a 26 ns pulse duration. The RR was modulated from 1 to 30 kHz, and the laser pulse duration measured between 23 ns and 130 ns, depending on the RR and the wavelength separation.

14.
J Biophotonics ; 12(11): e201900027, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30891937

RESUMO

The tremendous enhancement factors that surface-enhanced Raman scattering (SERS) possesses coupled with the flexibility of photonic crystal fibers (PCFs) pave the way to a new generation of ultrasensitive biosensors. Thanks to the unique structure of PCFs, which allows direct incorporation of an analyte into the axially aligned air channels, interaction between the analyte and excitation light could be increased many folds leading to flexible, reliable and sensitive probes that can be used in preclinical or clinical biosensing. SERS-active PCF probes provide unique opportunity to develop an opto-fluidic liquid biopsy needle sensor that enables one-step integrated sample collection and testing for disease diagnosis. Specificity being a key parameter to biosensors, the PCF inside the biopsy needle could be functionalized with targeting moieties to detect specific biomarkers. In this review article, we present some of the most promising recent biosensors based on PCFs including hollow-core PCFs, suspended-core PCFs and side-channel PCFs. We provide a wide range of applications of such platform using Raman spectroscopy, label free SERS or labeled SERS detection and analyze some of the main challenges to be addressed for translating it to a clinically viable next generation sensitive biopsy needle sensing probe.


Assuntos
Técnicas Biossensoriais/instrumentação , Limite de Detecção , Fibras Ópticas , Fótons , Análise Espectral Raman/instrumentação , Animais , Humanos , Propriedades de Superfície
15.
Lab Chip ; 18(4): 655-661, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29362756

RESUMO

All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.


Assuntos
Técnicas Analíticas Microfluídicas , Miócitos Cardíacos/química , Fibras Ópticas , Troponina T/análise , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/instrumentação
16.
Sci Rep ; 7(1): 12725, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983089

RESUMO

Broadband modulation of terahertz (THz) light is experimentally realized through the electrically driven metal-insulator phase transition of vanadium dioxide (VO2) in hybrid metal antenna-VO2 devices. The devices consist of VO2 active layers and bowtie antenna arrays, such that the electrically driven phase transition can be realized by applying an external voltage between adjacent metal wires extended to a large area array. The modulation depth of the terahertz light can be initially enhanced by the metal wires on top of VO2 and then improved through the addition of specific bowties in between the wires. As a result, a terahertz wave with a large beam size (~10 mm) can be modulated within the measurable spectral range (0.3-2.5 THz) with a frequency independent modulation depth as high as 0.9, and the minimum amplitude transmission down to 0.06. Moreover, the electrical switch on/off phase transition depends very much on the size of the VO2 area, indicating that smaller VO2 regions lead to higher modulation speeds and lower phase transition voltages. With the capabilities in actively tuning the beam size, modulation depth, modulation bandwidth as well as the modulation speed of THz waves, our study paves the way in implementing multifunctional components for terahertz applications.

17.
Sensors (Basel) ; 17(6)2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608831

RESUMO

This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

18.
Opt Express ; 24(24): 27674-27682, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906336

RESUMO

An in-line optofluidic refractive index (RI) sensing platform is constructed by splicing a side-channel photonic crystal fiber (SC-PCF) with side-polished single mode fibers. A long-period grating (LPG) combined with an intermodal interference between LP01 and LP11 core modes is used for sensing the RI of the liquid in the side channel. The resonant dip shows a nonlinear wavelength shift with increasing RI over the measured range from 1.3330 to 1.3961. The RI response of this sensing platform for a low RI range of 1.3330-1.3780 is approximately linear, and exhibits a sensitivity of 1145 nm/RIU. Besides, the detection limit of our sensing scheme is improved by around one order of magnitude by introducing the intermodal interference.

19.
Nanotechnology ; 27(20): 205206, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27070298

RESUMO

Vandium dioxide (VO2) shows promise as the basis for a terahertz wave modulator due to its phase transition properties. Its insulator-metal-transition (IMT) can be induced either through temperature changes, optically or electronically. Recently, a metal-VO2 wire grid structure was proposed which was able to increase the modulation depth (MD) from 0.65 to 0.9, suggesting that these simple metallic structures could greatly increase the difference in terahertz transmission for the insulating and metallic states of VO2 based structures. In this paper, we have found that the increase in MD decreases with increasing VO2 conductivity in the metallic state, resulting in a maximum modulation depth of approximately 0.95 for wire grid structures that preserves a high transmission in the insulating state. Surprisingly, we find that deposition of VO2 on top of metallic structures results in reduced performance. However, we find that devices based upon VO2 alone can achieve unexpectedly high performance. In this work we present a device with a switchable wire-grid polariser effect over a broadband frequency range (from 0.3 to 2 THz). To our knowledge this is the first such broadband metamaterial based solely on VO2. The ability to switch on a metamaterial property like this to produce a polarisation effect is very useful for future terahertz optical devices such as rotators and waveplates.

20.
Opt Lett ; 41(2): 380-3, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26766719

RESUMO

We report on a high-performance curvature sensor based on a long-period grating (LPG) in a dual-concentric-core fiber (DCCF). The LPG is inscribed to couple light from the fundamental mode of the central core to the ring-core modes, resulting in the generation of a series of resonant dips. Two adjacent dips shift toward each other when the LPG is bent. By monitoring the variation of the wavelength interval between these two dips, this LPG can be applied in curvature measurement with a sensitivity as high as -9.046 nm/m(-1). More importantly, such a wavelength interval is almost immune to the cross impacts of temperature and axial strain, since the sensitivities to temperature and axial strain are only 2.6 pm/°C and 0.083 pm/µÎµ, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...