Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1295-1302, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665646

RESUMO

The molecular electron acceptor material Y6 has been a key part of the most recent surge in organic solar cell sunlight-to-electricity power conversion efficiency, which is now approaching 20%. Numerous studies have sought to understand the fundamental photophysical reasons for the exceptional performance of Y6 and its growing family of structural derivatives. Though significant uncertainty about several details remains, many have concluded that initially photogenerated excited states rapidly convert into electron-hole charge pairs in the neat material. These charge pairs are characterized by location of the electron and hole on different Y6 molecules, in contrast to the Frenkel excitons that dominate the behavior of most organic semiconductor materials. Here, we summarize the current state of knowledge regarding Y6 photophysics and the key observations that have led to it. We then link this understanding to other advances, such as the role of quadrupolar fields in donor-acceptor blends, and the importance of molecular interactions and organization in providing the structural basis for Y6's properties. Finally, we turn our attention to ways of making use of the new photophysics of Y6, and suggest molecular doping, crystal structure tuning, and electric field engineering as promising avenues for future exploration.

2.
Phys Chem Chem Phys ; 25(28): 18990-18997, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37415566

RESUMO

The demand for fluorescent organic dyes across a broad range of applications has led to investigation into tuneable emission dyes. The tuneable nature of these dyes makes them desirable for applications in a variety of fields, including organic light-emitting diodes (OLEDs), optical sensing devices, and fluorescence imaging. In recent investigations, there have only been a handful of mechanisms used to tune emission. Herein, we present four novel perylene-acene dyads that undergo solvent tuneable emission, and propose a novel mechanism for this tuneability based on the presence of a charge transfer state. These dyes were shown to reach photoluminescence quantum efficiencies (PLQEs) as high as 45%, depending on the solvent, showing the ability for this mechanism to be used to access higher PLQE tuneable emission.

3.
Chemistry ; 29(31): e202301235, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37166050

RESUMO

Invited for the cover of this issue are Dan Furkert, Joe Bell-Tyrer and co-workers at the University of Auckland and Victoria University of Wellington. The image depicts a tandem cycloaddition-rearrangement process delivering a diverse range of molecular frameworks from simple precursors. Read the full text of the article at 10.1002/chem.202300261.

4.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212406

RESUMO

Simulations of exciton and charge hopping in amorphous organic materials involve numerous physical parameters. Each of these parameters must be computed from costly ab initio calculations before the simulation can commence, resulting in a significant computational overhead for studying exciton diffusion, especially in large and complex material datasets. While the idea of using machine learning to quickly predict these parameters has been explored previously, typical machine learning models require long training times, which ultimately contribute to simulation overheads. In this paper, we present a new machine learning architecture for building predictive models for intermolecular exciton coupling parameters. Our architecture is designed in such a way that the total training time is reduced compared to ordinary Gaussian process regression or kernel ridge regression models. Based on this architecture, we build a predictive model and use it to estimate the coupling parameters which enter into an exciton hopping simulation in amorphous pentacene. We show that this hopping simulation is able to achieve excellent predictions for exciton diffusion tensor elements and other properties as compared to a simulation using coupling parameters computed entirely from density functional theory. This result, along with the short training times afforded by our architecture, shows how machine learning can be used to reduce the high computational overheads associated with exciton and charge diffusion simulations in amorphous organic materials.

5.
Chemistry ; 29(31): e202300261, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36849870

RESUMO

Azide-enolate cycloaddition-rearrangements offer potential for rapid access to diverse molecular frameworks from simple precursors. We report here that investigations into the cycloadditions of ester or amide enolates with vinyl azides led to the identification of two reaction processes - direct α-amination of amides and lactams, and the synthesis of ene-γ-lactams from esters. The outcomes of these reactions depended on the fate of key vinyl triazoline intermediates generated in the initial cycloaddition step. Isolation of reaction intermediates in the ene-γ-lactam synthesis revealed the unexpected addition of two enolate equivalents, one of which is later eliminated. Computational studies further suggested an unusual reaction pathway involving direct addition of an enolate to the terminal carbon of the N-vinyl triazoline. In contrast, the α-amination of amides and lactams proceeded by rearrangement of the intermediate triazoline to give an imine, hydrolysis or reduction of which gave access to primary or secondary α-amino amides or lactams.

6.
Chem Commun (Camb) ; 59(12): 1613-1616, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36632697

RESUMO

The synthesis, spectroelectrochemical and structural characteristics of highly electron-accepting diketopyrrrolopyrrole (DPP) molecules with adjoining pyridinium rings is reported, along with an assessment of their toxicity, which is apparently low. The compounds show reversible electrochemistry and in one subfamily a massive increase in molar extinction coefficient upon electrochemical reduction.

7.
J Am Chem Soc ; 145(1): 732-744, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538761

RESUMO

Control over the populations of singlet and triplet excitons is key to organic semiconductor technologies. In different contexts, triplets can represent an energy loss pathway that must be managed (i.e., solar cells, light-emitting diodes, and lasers) or provide avenues to improve energy conversion (i.e., photon upconversion and multiplication systems). A key consideration in the interplay of singlet and triplet exciton populations in these systems is the rate of intersystem crossing (ISC). In this work, we design, measure, and model a series of new electron acceptor molecules and analyze them using a combination of ultrafast transient absorption and ultrafast broadband photoluminescence spectroscopies. We demonstrate that intramolecular triplet formation occurs within several hundred picoseconds in solution and is accelerated considerably in the solid state. Importantly, ISC occurs with sufficient rapidity to compete with charge formation in modern organic solar cells, implicating triplets in intrinsic exciton loss channels in addition to charge recombination. Density functional theory calculations reveal that ISC occurs in triplet excited states characterized by local deviations from orbital π-symmetry associated with rotationally flexible thiophene rings. In disordered films, structural distortions, therefore, result in significant increases in spin-orbit coupling, enabling rapid ISC. We demonstrate the generality of this proposal in an oligothiophene model system where ISC is symmetry-forbidden and show that conformational disorder introduced by the formation of a solvent glass accelerates ISC, outweighing the lower temperature and increased viscosity. This proposal sheds light on the factors responsible for facile ISC and provides a simple framework for molecular control over spin states.

8.
Proc Natl Acad Sci U S A ; 119(43): e2212343119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227945

RESUMO

The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.


Assuntos
Prótons , Protetores Solares , Catecóis , Humanos , Melaninas , Solventes
9.
Adv Mater ; 34(50): e2206717, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189867

RESUMO

In contrast to classical bulk heterojunction (BHJ) in organic solar cells (OSCs), the quasi-homojunction (QHJ) with extremely low donor content (≤10 wt.%) is unusual and generally yields much lower device efficiency. Here, representative polymer donors and nonfullerene acceptors are selected to fabricate QHJ OSCs, and a complete picture for the operation mechanisms of high-efficiency QHJ devices is illustrated. PTB7-Th:Y6 QHJ devices at donor:acceptor (D:A) ratios of 1:8 or 1:20 can achieve 95% or 64% of the efficiency obtained from its BHJ counterpart at the optimal D:A ratio of 1:1.2, respectively, whereas QHJ devices with other donors or acceptors suffer from rapid roll-off of efficiency when the donors are diluted. Through device physics and photophysics analyses, it is observed that a large portion of free charges can be intrinsically generated in the neat Y6 domains rather than at the D/A interface. Y6 also serves as an ambipolar transport channel, so that hole transport as also mainly through Y6 phase. The key role of PTB7-Th is primarily to reduce charge recombination, likely assisted by enhancing quadrupolar fields within Y6 itself, rather than the previously thought principal roles of light absorption, exciton splitting, and hole transport.

10.
J Am Chem Soc ; 144(30): 13652-13662, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35858283

RESUMO

Herein we report the first examples of thiol-selective heterobifunctional electrophiles, N-vinyl acrylamides, that enable efficient highly selective thiol-thiol bioconjugations and cysteine modification of peptides. We demonstrate that these new classes of thiol-selective scaffolds can readily undergo a thia-Michael addition and an orthogonal radical induced thiol-ene "click" reaction under biocompatible conditions. Furthermore, the formation of an unexpected Markovnikov N,S-acetal hydrothiolation was explained using computational studies. We also reveal that N-methylation of the N-vinyl acrylamide scaffold changes the regioselectivity of the reaction. We demonstrate that use of N-vinyl acrylamides shows promise as an efficient, mild, and exquisite cysteine-selective protocol for facile construction of fluorophore-labeled peptides and proteins and that the resultant conjugates are resistant to degradation and thiol exchange, thus significantly improving their biophysical properties.


Assuntos
Cisteína , Compostos de Sulfidrila , Acrilamidas , Cisteína/química , Peptídeos/química , Proteínas , Compostos de Sulfidrila/química
11.
Nat Commun ; 13(1): 2827, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595764

RESUMO

Organic photovoltaics (OPVs) promise cheap and flexible solar energy. Whereas light generates free charges in silicon photovoltaics, excitons are normally formed in organic semiconductors due to their low dielectric constants, and require molecular heterojunctions to split into charges. Recent record efficiency OPVs utilise the small molecule, Y6, and its analogues, which - unlike previous organic semiconductors - have low band-gaps and high dielectric constants. We show that, in Y6 films, these factors lead to intrinsic free charge generation without a heterojunction. Intensity-dependent spectroscopy reveals that 60-90% of excitons form free charges at AM1.5 light intensity. Bimolecular recombination, and hole traps constrain single component Y6 photovoltaics to low efficiencies, but recombination is reduced by small quantities of donor. Quantum-chemical calculations reveal strong coupling between exciton and CT states, and an intermolecular polarisation pattern that drives exciton dissociation. Our results challenge how current OPVs operate, and renew the possibility of efficient single-component OPVs.

12.
J Org Chem ; 86(6): 4779-4785, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33686852

RESUMO

A biosynthetic hypothesis proposed herein was used to guide the total synthesis of the marine-derived alkaloid hyrtioseragamine A. In the key biomimetic step, an enedione underwent acid-mediated isomerization-cyclodehydration to form the rare furopyrazine core of the natural product. The spectroscopic data for the synthetic sample is in full agreement with that described in the isolation report.


Assuntos
Alcaloides , Produtos Biológicos , Biomimética , Furanos , Pirazinas
13.
RSC Adv ; 11(35): 21343-21350, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478807

RESUMO

Structural isomers of naphthalene-bridged disilanes were prepared via catalytic intramolecular dehydrocoupling of disilyl precursors using Wilkinson's catalyst. Interestingly, it was observed that interchanging the side groups on the silicon atoms altered the photophysical properties of the bridged disilanes. Herein, we report the first example of naphthalene bridged disilanes forming excimers in non-polar solvents. Cyclic voltammetry experiments and DFT calculations were performed to analyse the band gaps of the compounds and σ-π mixing in the bridged disilanes.

16.
Org Lett ; 22(3): 1022-1027, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31990192

RESUMO

2-Bromo-1,3-butadienes are demonstrated to be effective substrates for tandem Diels-Alder/transition metal cross-coupling reaction sequences. Intermolecular cycloaddition of a 2-bromo-1,3-diene with activated dienophiles proceeded under Lewis acid catalysis in generally high yields with good to excellent endo diastereoselectivity. The resulting vinyl bromide cycloadducts underwent subsequent Stille and Suzuki cross-couplings under standard conditions in good yields. Both the Diels-Alder and cross-coupling steps were highly tolerant of a range of functionalities and protecting groups. The use of the bromine substituent as both a cycloaddition directing group and cross-coupling nucleofuge avoids extra steps required to install and remove the more commonly used silyl enol ethers and enol sulfonates for each transformation and gives full control of the alkene regiochemistry throughout the reaction sequence. The 2-bromo-1,3-dienes were conveniently prepared in three steps from readily available aldehydes and established as hydrolytically stable and practical synthetic intermediates.

17.
J Phys Chem A ; 124(3): 591-600, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877043

RESUMO

Electronic coupling between excited states is a vital parameter required to describe ultrafast energy and charge transfer processes that occur in photoresponsive organic materials. In such systems, short-range Coulombic, exchange, overlap, and configuration interaction effects must all be accounted for. Although a number of methods are available, the evaluation of coupling between arbitrary excited states remains challenging. In this contribution, a flexible and scalable method for the calculation of short-range electronic coupling between excited states is developed. Excitation- or charge-localized states are projected onto the adiabatic states of a dimeric molecular system using an efficient wave function overlap algorithm. In addition to correctly treating Coulombic, exchange, and overlap contributions, the inclusion of multistate interactions is inherent in the procedure. The method is then used to disentangle excitation energy transfer, charge transfer, and charge recombination processes in donor/acceptor systems relevant to organic photovoltaics, with a view toward the development of material design principles. Calculations were performed within single-excitation frameworks, but the scheme has the potential to be extended to multireference/higher-order excitation quantum-chemical methods.

18.
J Nat Prod ; 82(7): 2000-2008, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31306000

RESUMO

Six new lamellarin sulfates (1-6) were isolated from the methanolic extract of the Pacific tunicate Didemnum ternerratum, collected from the Kingdom of Tonga. Mass spectrometric molecular networking through the GNPS platform was used to target the isolation of 1-6. Planar structures were elucidated through a combination of NMR and MS experiments. Through comparison of experimental and calculated ECD spectra, the absolute configurations of atropisomers 2-5 were determined, with their energetic barriers to racemization also determined computationally. The cytotoxicity of the compounds was tested against the human colon carcinoma cell line HCT-116, where lamellarin D-8-sulfate (5) exhibited moderate activity with an IC50 of 9.7 µM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Cumarínicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Cumarínicos/química , Cumarínicos/isolamento & purificação , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Humanos , Concentração Inibidora 50 , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/isolamento & purificação , Espectrometria de Massas/métodos
19.
Chempluschem ; 84(9): 1413-1422, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944058

RESUMO

A series of symmetrically bis-4-methoxybenzyl (4MB) N-substituted 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) derivatives have been synthesized. The 4MB unit makes the DPP core soluble, and shows subtle modification of up to 0.2 eV in ground and excited states of the core when compared with related alkyl derivatives. Absorption and emission spectroscopy, as well as electrochemical and computational methods have been employed to prove the importance of the peripheral aryl units on the donor/ acceptor properties of the molecules. The 4MB products are highly fluorescent (quantum yields approaching 100 % in solution), with a unique distribution of frontier states shown by spectroelectrochemistry. The solid-state fluorescence correlates with the X-ray crystal structures of the compounds, a Stokes shift of approximately 80 nm is seen for two of the compounds. The frontier energy levels show that this subtle substitutional change could be of future use in molecular energy level tailoring in these, and related, materials for organic (opto)electronics.

20.
Chemistry ; 24(54): 14461-14469, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30048569

RESUMO

Chiral thiophene-diketopyrrolopyrrole derivatives have been synthesised to investigate the potential of stereochemistry and symmetry as a means of modulating properties by influencing self-assembly of these purely organic materials. In particular, derivatives of diketopyrrolopyrrole were employed because of their proven interest as dyes, especially for organic solar cells. The natural product myrtenal was used as the source of stereochemistry, introduced through a Kröhnke reaction of a thiophene-bearing pyridinium salt and diketopyrrolopyrroles were prepared through Suzuki coupling with this chiral moiety at one end only as well as at both ends. Absorption spectroscopy and electrochemistry confirmed the potential suitability of the compounds for photovoltaic devices. The nanostructures formed by the compounds have been probed with circular dichroism spectroscopy in solution and in films. It is shown that a chiral C2 symmetric molecule assembles in solution giving a strong circular dichroic signal while as a film this optical activity is nulled, whereas an asymmetric homologue is most optically active as a thin film. The X-ray crystal structure of the asymmetric compound shows a polar order of the molecules that might explain this observation. The lack of optical activity in solution is very likely a result of the high solubility of the compound. The results reaffirm the sensitivity of circular dichroism spectroscopy to inter-chromophore organisation, whereas absorption spectroscopy in the visible region reveals only slight changes to the bands. The differing order in the compounds also affects their performance in bulk heterojunction photovoltaic devices. Atomic force microscopy of the blended thin films with the fullerene derivative usually employed (PC61 BM) showed that smooth and well mixed films were achieved, with the conditions required during spin coating depending greatly on the derivative, because of their differing solubility. The apparently better performance of the symmetrical compound (although with very low efficiency) is probably a result of the alignment of the molecules inferred by the circular dichroism experiments, whereas the asymmetric compound presumably adopts a twisted supramolecular organisation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...