Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1960, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263429

RESUMO

Humans are regularly cited as the main driver of current biodiversity extinction, but the impact of historic volcanic activity is often overlooked. Pre-human evidence of wildlife abundance and diversity are essential for disentangling anthropogenic impacts from natural events. Réunion Island, with its intense and well-documented volcanic activity, endemic biodiversity, long history of isolation and recent human colonization, provides an opportunity to disentangle these processes. We track past demographic changes of a critically endangered seabird, the Mascarene petrel Pseudobulweria aterrima, using genome-wide SNPs. Coalescent modeling suggested that a large ancestral population underwent a substantial population decline in two distinct phases, ca. 125,000 and 37,000 years ago, coinciding with periods of major eruptions of Piton des Neiges. Subsequently, the ancestral population was fragmented into the two known colonies, ca. 1500 years ago, following eruptions of Piton de la Fournaise. In the last century, both colonies declined significantly due to anthropogenic activities, and although the species was initially considered extinct, it was rediscovered in the 1970s. Our findings suggest that the current conservation status of wildlife on volcanic islands should be firstly assessed as a legacy of historic volcanic activity, and thereafter by the increasing anthropogenic impacts, which may ultimately drive species towards extinction.


Assuntos
Animais Selvagens , Efeitos Antropogênicos , Animais , Humanos , Biodiversidade , Polimorfismo de Nucleotídeo Único , Reunião
2.
R Soc Open Sci ; 10(10): 230600, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37800153

RESUMO

Animal migration is a major driver of infectious agent dispersal. Duck and seabird migrations, for instance, play a key role in the spatial transmission dynamics and gene flow of avian influenza viruses (AIV), worldwide. On tropical islands, brown and lesser noddies (Anous stolidus and Anous tenuirostris) may be important AIV hosts, but the lack of knowledge on their migratory behaviour limits our understanding of virus circulation in island networks. Here we show that high connectivity between islands generated by non-breeding dispersive behaviours may be a major driver in the spread and the maintenance of AIV among tropical islands of the western Indian Ocean. Tracking data highlight two types of dispersive behaviours during the non-breeding season: birds either staying in the vicinity of their breeding ground (on Bird Island, Seychelles), or moving to and roosting on other islands in the western Indian Ocean. Migrant birds used a wide range of roosting places from the Tanzanian coasts to the Maldives archipelago and Tromelin Island. Epidemiological data confirm that brown and lesser noddies are major hosts for AIV, although significant variations of seroprevalence between species suggest that other biological and ecological drivers could be involved in virus infection and transmission dynamics.

3.
Mol Biol Rep ; 49(12): 12259-12267, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36194377

RESUMO

BACKGROUND: Shearwaters (order Procellariiformes) are an excellent study system to investigate the genetic consequences of the co-called "seabird paradox", as they are able to disperse long distances but many species exhibit natal and breeding philopatry. However, few microsatellite markers are currently available for these taxa, hampering genetic inferences. METHODS AND RESULTS: In this study, 25 novel microsatellite loci were isolated and characterized for each of two distantly related shearwater species: the wedge-tailed shearwater (Ardenna pacifica) and the tropical shearwater (Puffinus bailloni). Polymorphism tests were performed for a total of 91 A. pacifica individuals sampled at Reunion and Round Island, and 48 P. bailloni individuals from Reunion and Europa Island, in the western Indian Ocean. The analyses revealed 23 polymorphic loci for A. pacifica, with the number of alleles per locus (Na) ranging from 2 to 8 (mean = 3.957 ± 0.364). Nineteen polymorphic loci were found for P. bailloni, with Na varying from two to five (mean = 3.053 ± 0.247). The observed heterozygosity (Ho) was relatively low for the two species, with Ho ranging from 0.022 to 0.725 (mean = 0.326 ± 0.044) for A. pacifica and from 0.021 to 0.688 (mean = 0.271 ± 0.051) for P. bailloni, but comparable to the estimates available for other Puffinus species. CONCLUSIONS: The new microsatellite loci provide a valuable tool for further population genetic studies, and will allow for design of effective conservation and management plans for A. pacifica, P. bailloni and other closely-related species.


Assuntos
Aves , Repetições de Microssatélites , Animais , Cruzamento , Oceano Índico , Repetições de Microssatélites/genética
4.
Ecol Evol ; 10(21): 11886-11905, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209258

RESUMO

Investigations of the genetic structure of populations over the entire range of a species yield valuable information about connectivity among populations. Seabirds are an intriguing taxon in this regard because they move extensively when not breeding, facilitating intermixing of populations, but breed consistently on the same isolated islands, restricting gene flow among populations. The degree of genetic structuring of populations varies extensively among seabird species but they have been understudied in their tropical ranges. Here, we address this across a broad spatial scale by using microsatellite and mitochondrial data to explore the population connectivity of 13 breeding populations representing the six subspecies of the white-tailed tropicbird (Phaethon lepturus) in the Atlantic, Indian, and Pacific Oceans. Our primary aim was to identify appropriate conservation units for this little known species. Three morphometric characters were also examined in the subspecies. We found a clear pattern of population structuring with four genetic groups. The most ancient and the most isolated group was in the northwestern Atlantic Ocean. The South Atlantic populations and South Mozambique Channel population on Europa were genetically isolated and may have had a common ancestor. Birds from the Indo-Pacific region showed unclear and weak genetic differentiation. This structuring was most well defined from nuclear and mtDNA markers but was less well resolved by morphological data. The validity of classifying white-tailed tropicbirds into six distinct subspecies is discussed in light of our new findings. From a conservation standpoint our results highlight that the three most threatened conservation units for this species are the two subspecies of the tropical North and South Atlantic Oceans and that of Europa Island in the Indian Ocean.

5.
Phytochemistry ; 176: 112401, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464510

RESUMO

Psiadia arguta (Asteraceae) is endemic to the island of Mauritius in the Indian Ocean. The species is traditionally used to treat various ailments, such as its use as an expectorant or for the treatment of bronchitis and asthma. Preliminary biological screenings have displayed the antimalarial (Plasmodium falciparum) and anticancer (HeLa human cell line) potential of P. arguta leaves. The phytochemical investigation of this plant has led to the isolation and characterization of sixteen compounds including five antiplasmodial molecules. The accumulation of the antiplasmodial compounds during the growth of the plant was studied by a 1H NMR-based metabolomic approach. In order to identify factors influencing the production of bioactive compounds, young plants of P. arguta were multiplied using in vitro culture techniques, and micro-propagated plants at different stages of development were acclimatized and followed for the experiments. The multivariate data analysis showed an accumulation of four bioactive compounds in the leaves of P. arguta when these plants were challenged with a biotic stress: labdan-13(E)-en-8α-ol-15-yl acetate, labdan-8α-ol-15-yl acetate, labdan-13(E)-ene-8α-ol-15-diol, and (8R,13S)-labdan-8,15-diol.


Assuntos
Antimaláricos , Asteraceae , Humanos , Extratos Vegetais , Folhas de Planta , Plasmodium falciparum , Espectroscopia de Prótons por Ressonância Magnética
6.
Appl Plant Sci ; 4(8)2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27610278

RESUMO

PREMISE OF THE STUDY: Polymorphic markers were required for a native tree of the Mascarene Islands, Foetidia mauritiana (Lecythidaceae), to investigate the effects of fragmentation of lowland tropical habitats on tree mating systems and on gene flow. METHODS AND RESULTS: Using microsatellite enrichment and next-generation sequencing, we identified 13 microsatellite loci (dinucleotide repeats). They were highly polymorphic in 121 trees sampled in the largest three populations on Réunion, revealing 2-17 different alleles per locus. Furthermore, they were found to be polymorphic in conspecific populations on Mauritius and in F. rodriguesiana from Rodrigues. CONCLUSIONS: These results indicate the utility of these markers to investigate genetic diversity, mating systems, and gene flow in a genus native to the biodiversity hotspot of Madagascar and the Indian Ocean islands.

7.
Ann Bot ; 118(1): 93-103, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26944785

RESUMO

BACKGROUNDS AND AIMS: Theory predicts that the long-term persistence of plant populations exposed to size reduction can be threatened by a loss of genetic diversity and increased inbreeding. However, several life-history and ecological traits can influence the response to population size reduction. The reproductive patterns, levels of genetic diversity and magnitude of inbreeding depression of the rare and fragmented Jumellea fragrans and of its widespread congener J. rossii were studied. The aim was to evaluate the effects of over-collection and fragmentation on J. fragrans and to enhance our knowledge of the biology and ecology of the two species, used for their aromatic and medicinal properties on Réunion. METHODS: Hand pollination experiments were conducted to determine the breeding system and to evaluate the potential for inbreeding depression in both species. Nuclear microsatellite markers were used to investigate selfing rates and levels of genetic diversity. KEY RESULTS: Jumellea rossii revealed a mixed-mating system, and inbreeding depression at the germination stage (δ = 0·66). Levels of genetic diversity were relatively high [allelic richness (AR) = 8·575 and expected heterozygosity (He) = 0·673]. In J. fragrans, selfing rates suggest a mainly outcrossing mating system. Genetic diversity was lower than in J. rossii, but not yet critically low (AR = 4·983 and He = 0·492), probably because of the mainly outcrossing mating system and the relatively high density of individuals in the studied population. Jumellea fragrans did not show inbreeding depression, and it is hypothesized that the population had progressively purged its genetic load during successive fragmentation events. CONCLUSIONS: Even if the persistence of the J. fragrans population is not threatened in the short term, its genetic diversity has probably been reduced by fragmentation and over-collection. In situ conservation actions for J. fragrans and ex situ cultivation of both species are recommended in order to meet the demand of local people.


Assuntos
Variação Genética , Depressão por Endogamia , Orchidaceae/genética , Genética Populacional , Pólen/genética , Polinização , Reprodução , Reunião , Autofertilização
8.
PLoS One ; 9(2): e87469, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498329

RESUMO

Identifying factors that promote population differentiation is of interest for understanding the early stages of speciation. Gene flow among populations inhabiting different environments can be reduced by geographical distance (isolation-by-distance) or by divergent selection resulting from local adaptation (isolation-by-ecology). Few studies have investigated the influence of these factors in small oceanic islands where the influence of geographic distance is expected to be null but where habitat diversity could have a strong effect on population differentiation. In this study, we tested for the spatial divergence of phenotypes (floral morphology and floral scent) and genotypes (microsatellites) among ten populations of Jumellea rossii, an epiphytic orchid endemic to Réunion growing in three different habitats. We found a significant genetic differentiation between populations that is structured by habitat heterogeneity rather than by geographic distance between populations. These results suggest that ecological factors might reduce gene flow among populations located in different habitats. This pattern of isolation-by-habitat may be the result of both isolation-by-ecology by habitat filtering and asynchrony in flowering phenology. Furthermore, data on floral morphology match these findings, with multivariate analysis grouping populations by habitat type but could be only due to phenotypic plasticity. Indeed floral scent compounds were not significantly different between populations indicating that specific plant-pollinator mutualism does not seem to play a major role in the population differentiation of J. rossii. In conclusion, the results from our study emphasize the importance of habitat diversity of small oceanic islands as a factor of population differentiation.


Assuntos
Ecossistema , Variação Genética , Repetições de Microssatélites/genética , Orchidaceae/genética , Adaptação Fisiológica/genética , Altitude , Flores/genética , Fluxo Gênico , Genética Populacional , Genótipo , Geografia , Oceano Índico , Ilhas , Fenótipo , Dinâmica Populacional , Estações do Ano , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...