Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Clin Oncol ; 42(8): 940-950, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38241600

RESUMO

PURPOSE: Standard curative-intent chemoradiotherapy for human papillomavirus (HPV)-related oropharyngeal carcinoma results in significant toxicity. Since hypoxic tumors are radioresistant, we posited that the aerobic state of a tumor could identify patients eligible for de-escalation of chemoradiotherapy while maintaining treatment efficacy. METHODS: We enrolled patients with HPV-related oropharyngeal carcinoma to receive de-escalated definitive chemoradiotherapy in a phase II study (ClinicalTrials.gov identifier: NCT03323463). Patients first underwent surgical removal of disease at their primary site, but not of gross disease in the neck. A baseline 18F-fluoromisonidazole positron emission tomography scan was used to measure tumor hypoxia and was repeated 1-2 weeks intratreatment. Patients with nonhypoxic tumors received 30 Gy (3 weeks) with chemotherapy, whereas those with hypoxic tumors received standard chemoradiotherapy to 70 Gy (7 weeks). The primary objective was achieving a 2-year locoregional control (LRC) of 95% with a 7% noninferiority margin. RESULTS: One hundred fifty-eight patients with T0-2/N1-N2c were enrolled, of which 152 patients were eligible for analyses. Of these, 128 patients met criteria for 30 Gy and 24 patients received 70 Gy. The 2-year LRC was 94.7% (95% CI, 89.8 to 97.7), meeting our primary objective. With a median follow-up time of 38.3 (range, 22.1-58.4) months, the 2-year progression-free survival (PFS) and overall survival (OS) rates were 94% and 100%, respectively, for the 30-Gy cohort. The 70-Gy cohort had similar 2-year PFS and OS rates at 96% and 96%, respectively. Acute grade 3-4 adverse events were more common in 70 Gy versus 30 Gy (58.3% v 32%; P = .02). Late grade 3-4 adverse events only occurred in the 70-Gy cohort, in which 4.5% complained of late dysphagia. CONCLUSION: Tumor hypoxia is a promising approach to direct dosing of curative-intent chemoradiotherapy for HPV-related carcinomas with preserved efficacy and substantially reduced toxicity that requires further investigation.


Assuntos
Carcinoma , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/terapia , Neoplasias Orofaríngeas/terapia , Neoplasias Orofaríngeas/tratamento farmacológico , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Carcinoma/tratamento farmacológico , Hipóxia/etiologia , Hipóxia/tratamento farmacológico
3.
J Nucl Med ; 64(11): 1779-1787, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652541

RESUMO

A single-institution prospective pilot clinical trial was performed to demonstrate the feasibility of combining [177Lu]Lu-PSMA-617 radiopharmaceutical therapy (RPT) with stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic castration-sensitive prostate cancer. Methods: Six patients with 9 prostate-specific membrane antigen (PSMA)-positive oligometastases received 2 cycles of [177Lu]Lu-PSMA-617 RPT followed by SBRT. After the first intravenous infusion of [177Lu]Lu-PSMA-617 (7.46 ± 0.15 GBq), patients underwent SPECT/CT at 3.2 ± 0.5, 23.9 ± 0.4, and 87.4 ± 12.0 h. Voxel-based dosimetry was performed with calibration factors (11.7 counts per second/MBq) and recovery coefficients derived from in-house phantom experiments. Lesions were segmented on baseline PSMA PET/CT (50% SUVmax). After a second cycle of [177Lu]Lu-PSMA-617 (44 ± 3 d; 7.50 ± 0.10 GBq) and an interim PSMA PET/CT scan, SBRT (27 Gy in 3 fractions) was delivered to all PSMA-avid oligometastatic sites, followed by post-PSMA PET/CT. RPT and SBRT voxelwise dose maps were scaled (α/ß = 3 Gy; repair half-time, 1.5 h) to calculate the biologically effective dose (BED). Results: All patients completed the combination therapy without complications. No grade 3+ toxicities were noted. The median of the lesion SUVmax as measured on PSMA PET was 16.8 (interquartile range [IQR], 11.6) (baseline), 6.2 (IQR, 2.7) (interim), and 2.9 (IQR, 1.4) (post). PET-derived lesion volumes were 0.4-1.7 cm3 The median lesion-absorbed dose (AD) from the first cycle of [177Lu]Lu-PSMA-617 RPT (ADRPT) was 27.7 Gy (range, 8.3-58.2 Gy; corresponding to 3.7 Gy/GBq, range, 1.1-7.7 Gy/GBq), whereas the median lesion AD from SBRT was 28.1 Gy (range, 26.7-28.8 Gy). Spearman rank correlation, ρ, was 0.90 between the baseline lesion PET SUVmax and SPECT SUVmax (P = 0.005), 0.74 (P = 0.046) between the baseline PET SUVmax and the lesion ADRPT, and -0.81 (P = 0.022) between the lesion ADRPT and the percent change in PET SUVmax (baseline to interim). The median for the lesion BED from RPT and SBRT was 159 Gy (range, 124-219 Gy). ρ between the BED from RPT and SBRT and the percent change in PET SUVmax (baseline to post) was -0.88 (P = 0.007). Two cycles of [177Lu]Lu-PSMA-617 RPT contributed approximately 40% to the maximum BED from RPT and SBRT. Conclusion: Lesional dosimetry in patients with oligometastatic castration-sensitive prostate cancer undergoing [177Lu]Lu-PSMA-617 RPT followed by SBRT is feasible. Combined RPT and SBRT may provide an efficient method to maximize the delivery of meaningful doses to oligometastatic disease while addressing potential microscopic disease reservoirs and limiting the dose exposure to normal tissues.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Radiocirurgia , Masculino , Humanos , Compostos Radiofarmacêuticos/efeitos adversos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/patologia , Dipeptídeos/uso terapêutico , Antígeno Prostático Específico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Castração , Lutécio/uso terapêutico
4.
J Vasc Interv Radiol ; 34(9): 1556-1564.e4, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201655

RESUMO

PURPOSE: To evaluate the yttrium-90 (90Y) activity distribution in biopsy tissue samples of the treated liver to quantify the dose with higher spatial resolution than positron emission tomography (PET) for accurate investigation of correlations with microscopic biological effects and to evaluate the radiation safety of this procedure. MATERIALS AND METHODS: Eighty-six core biopsy specimens were obtained from 18 colorectal liver metastases (CLMs) immediately after 90Y transarterial radioembolization (TARE) with either resin or glass microspheres using real-time 90Y PET/CT guidance in 17 patients. A high-resolution micro-computed tomography (micro-CT) scanner was used to image the microspheres in part of the specimens and allow quantification of 90Y activity directly or by calibrating autoradiography (ARG) images. The mean doses to the specimens were derived from the measured specimens' activity concentrations and from the PET/CT scan at the location of the biopsy needle tip for all cases. Staff exposures were monitored. RESULTS: The mean measured 90Y activity concentration in the CLM specimens at time of infusion was 2.4 ± 4.0 MBq/mL. The biopsies revealed higher activity heterogeneity than PET. Radiation exposure to the interventional radiologists during post-TARE biopsy procedures was minimal. CONCLUSIONS: Counting the microspheres and measuring the activity in biopsy specimens obtained after TARE are safe and feasible and can be used to determine the administered activity and its distribution in the treated and biopsied liver tissue with high spatial resolution. Complementing 90Y PET/CT imaging with this approach promises to yield more accurate direct correlation of histopathological changes and absorbed dose in the examined specimens.


Assuntos
Neoplasias Colorretais , Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Microtomografia por Raio-X , Autorradiografia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/tratamento farmacológico , Radioisótopos de Ítrio/efeitos adversos , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Biópsia Guiada por Imagem , Microesferas
5.
Eur J Nucl Med Mol Imaging ; 50(10): 2971-2983, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171634

RESUMO

PURPOSE: To introduce a biomarker-based dosimetry method for the rational selection of a treatment activity for patients undergoing radioactive iodine 131I therapy (RAI) for metastatic differentiated thyroid cancer (mDTC) based on single-timepoint imaging of individual lesion uptake by 124I PET. METHODS: Patients referred for RAI therapy of mDTC were enrolled in institutionally approved protocols. A total of 208 mDTC lesions (in 21 patients) with SUVmax > 1 underwent quantitative PET scans at 24, 48, 72, and 120 h post-administration of 222 MBq of theranostic NaI-124I to determine the individual lesion radiation-absorbed dose. Using a general estimating equation, a prediction curve for biomarker development was generated in the form of a best-fit regression line and 95% prediction interval, correlating individual predicted lesion radiation dose metrics, with candidate biomarkers ("predictors") such as SUVmax and activity in microcurie per gram, from a single imaging timepoint. RESULTS: In the 169 lesions (in 15 patients) that received 131I therapy, individual lesion cGy varied over 3 logs with a median of 22,000 cGy, confirming wide heterogeneity of lesion radiation dose. Initial findings from the prediction curve on all 208 lesions confirmed that a 48-h SUVmax was the best predictor of lesion radiation dose and permitted calculation of the 131I activity required to achieve a lesional threshold radiation dose (2000 cGy) within defined confidence intervals. CONCLUSIONS: Based on MIRD lesion-absorbed dose estimates and regression statistics, we report on the feasibility of a new single-timepoint 124I-PET-based dosimetry biomarker for RAI in patients with mDTC. The approach provides clinicians with a tool to select personalized (precision) therapeutic administration of radioactivity (MBq) to achieve a desired target lesion-absorbed dose (cGy) for selected index lesions based on a single 48-h measurement 124I-PET image, provided the selected activity does not exceed the maximum tolerated activity (MTA) of < 2 Gy to blood, as is standard of care at Memorial Sloan Kettering Cancer Center. TRIAL REGISTRATION: NCT04462471, Registered July 8, 2020. NCT03647358, Registered Aug 27, 2018.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Adenocarcinoma/tratamento farmacológico , Radioisótopos do Iodo/uso terapêutico , Doses de Radiação , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/tratamento farmacológico
6.
J Nucl Med ; 64(6): 946-950, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36759197

RESUMO

Radiolabeled antibody treatment with 131I-omburtamab, administered intraventricularly into the cerebrospinal fluid (CSF) space, can deliver therapeutic absorbed doses to sites of leptomeningeal disease. Assessment of distribution and radiation dosimetry is a key element in optimizing such treatments. Using a theranostic approach, we performed pretreatment 131I-omburtamab imaging and dosimetric analysis in patients before therapy. Methods: Whole-body planar images were acquired 3 ± 1, 23 ± 2, and 47 ± 2 h after intracranioventricular administration of 75 ± 5 MBq of 131I-omburtamab via an Ommaya reservoir. Multiple blood samples were also obtained for kinetic analysis. Separate regions of interest (ROIs) were manually drawn to include the lateral ventricles, entire spinal canal CSF space, and over the whole body. Count data in the ROIs were corrected for background and physical decay, converted to activity, and subsequently fitted to an exponential clearance function. The radiation absorbed dose was estimated to the CSF, separately to the spinal column and ventricles, and to the whole body and blood. Biodistribution of the injected radiolabeled antibody was assessed for all patients. Results: Ninety-five patients were included in the analysis. Biodistribution showed prompt localization in the ventricles and spinal CSF space with low systemic distribution, noted primarily as hepatic, renal, and bladder activity after the first day. Using ROI analysis, the effective half-lives were 13 ± 11 h (range, 5-75 h) for CSF in the spinal column, 8 ± 3 h (range, 3-17 h) for ventricles, and 41 ± 11 (range, 23-81 h) for the whole body. Mean absorbed doses were 0.63 ± 0.38 cGy/MBq (range, 0.24-2.25 cGy/MBq) for CSF in the spinal column, 1.03 ± 0.69 cGy/MBq (range, 0.27-5.15 cGy/MBq) for the ventricular CSF, and 0.45 ± 0.32 mGy/MBq (range, 0.05-1.43 mGy/MBq) for the whole body. Conclusion: Pretherapeutic imaging with 131I-omburtamab allows assessment of biodistribution and dosimetry before the administration of therapeutic activity. Absorbed doses to the CSF compartments and whole body derived from the widely applicable serial 131I-omburtamab planar images had acceptable agreement with previously reported data determined from serial 124I-omburtamab PET scans.


Assuntos
Radioimunodetecção , Radiometria , Humanos , Cinética , Distribuição Tecidual , Radiometria/métodos , Anticorpos Monoclonais/uso terapêutico
7.
J Neurooncol ; 162(1): 69-78, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36853490

RESUMO

PURPOSE: Intraventricular compartmental radioimmunotherapy (cRIT) with 131-I-omburtamab is a potential therapy for recurrent primary brain tumors that can seed the thecal space. These patients often previously received external beam radiotherapy (EBRT) to a portion or full craniospinal axis (CSI) as part of upfront therapy. Little is known regarding outcomes after re-irradiation as part of multimodality therapy including cRIT. This study evaluates predictors of response, patterns of failure, and radiologic events after cRIT. METHODS: Patients with recurrent medulloblastoma or ependymoma who received 131-I-omburtamab on a prospective clinical trial were included. Extent of disease at cRIT initiation (no evidence of disease [NED] vs measurable disease [MD]) was assessed as associated with progression-free (PFS) and overall survival (OS) by Kaplan-Meier analysis. RESULTS: All 27 patients (20 medulloblastoma, 7 ependymoma) had EBRT preceding cRIT: most (22, 81%) included CSI (median dose 2340 cGy, boost to 5400 cGy). Twelve (44%) also received EBRT at relapse as bridging to cRIT. There were no cases of radionecrosis. At cRIT initiation, 11 (55%) medulloblastoma and 3 (43%) ependymoma patients were NED, associated with improved PFS (p = 0.002) and OS (p = 0.048) in medulloblastoma. Most relapses were multifocal. With medium follow-up of 3.0 years (95% confidence interval, 1.8-7.4), 6 patients remain alive with NED. CONCLUSION: For patients with medulloblastoma, remission at time of cRIT was associated with significantly improved survival outcomes. Relapses are often multifocal, particularly in the setting of measurable disease at cRIT initiation. EBRT is a promising tool to achieve NED status at cRIT initiation, with no cases of radiation necrosis.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Ependimoma , Meduloblastoma , Humanos , Anticorpos Monoclonais/uso terapêutico , Neoplasias Encefálicas/radioterapia , Neoplasias Cerebelares/radioterapia , Doença Crônica , Ependimoma/radioterapia , Radioisótopos do Iodo/uso terapêutico , Meduloblastoma/terapia , Recidiva Local de Neoplasia/radioterapia , Estudos Prospectivos , Dosagem Radioterapêutica
8.
J Hematol Oncol ; 15(1): 165, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371226

RESUMO

BACKGROUND: The prognosis for metastatic and recurrent tumors of the central nervous system (CNS) remains dismal, and the need for newer therapeutic targets and modalities is critical. The cell surface glycoprotein B7H3 is expressed on a range of solid tumors with a restricted expression on normal tissues. We hypothesized that compartmental radioimmunotherapy (cRIT) with the anti-B7H3 murine monoclonal antibody omburtamab injected intraventricularly could safely target CNS malignancies. PATIENTS AND METHODS: We conducted a phase I trial of intraventricular 131I-omburtamab using a standard 3 + 3 design. Eligibility criteria included adequate cerebrospinal fluid (CSF) flow, no major organ toxicity, and for patients > dose level 6, availability of autologous stem cells. Patients initially received 74 MBq radioiodinated omburtamab to evaluate dosimetry and biodistribution followed by therapeutic 131I-omburtamab dose-escalated from 370 to 2960 MBq. Patients were monitored clinically and biochemically for toxicity graded using CTCAEv 3.0. Dosimetry was evaluated using serial CSF and blood sampling, and serial PET or gamma-camera scans. Patients could receive a second cycle in the absence of grade 3/4 non-hematologic toxicity or progressive disease. RESULTS: Thirty-eight patients received 100 radioiodinated omburtamab injections. Diagnoses included metastatic neuroblastoma (n = 16) and other B7H3-expressing solid tumors (n = 22). Thirty-five patients received at least 1 cycle of treatment with both dosimetry and therapy doses. Acute toxicities included < grade 4 self-limited headache, vomiting or fever, and biochemical abnormalities. Grade 3/4 thrombocytopenia was the most common hematologic toxicity. Recommended phase 2 dose was 1850 MBq/injection. The median radiation dose to the CSF and blood by sampling was 1.01 and 0.04 mGy/MBq, respectively, showing a consistently high therapeutic advantage for CSF. Major organ exposure was well below maximum tolerated levels. In patients developing antidrug antibodies, blood clearance, and therefore therapeutic index, was significantly increased. In patients receiving cRIT for neuroblastoma, survival was markedly increased (median PFS 7.5 years) compared to historical data. CONCLUSIONS: cRIT with 131I-omburtamab is safe, has favorable dosimetry and may have a therapeutic benefit as adjuvant therapy for B7-H3-expressing leptomeningeal metastases. TRIAL REGISTRATION: clinicaltrials.gov NCT00089245, August 5, 2004.


Assuntos
Neoplasias do Sistema Nervoso Central , Neuroblastoma , Humanos , Animais , Camundongos , Distribuição Tecidual , Recidiva Local de Neoplasia/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Neoplasias do Sistema Nervoso Central/radioterapia , Neuroblastoma/radioterapia , Antígenos B7
9.
EJNMMI Phys ; 9(1): 72, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258098

RESUMO

BACKGROUND: An open-source, extensible medical viewing platform is described, called the TriDFusion image viewer (3DF). The 3DF addresses many broad unmet needs in nuclear medicine research; it provides a viewer with several tools not available in commercial nuclear medicine workstations, yet invaluable for imaging in research studies. RESULTS: The 3DF includes an image integration platform to register images from multiple imaging modalities together with delineated volumes of interest (VOIs), structures and dose distributions. It can process images from different vendors' systems and is therefore vendor neutral. The 3DF also provides a convenient tool for performing multi-modality image analysis and fusion. The functional components currently being distributed is open-source code that includes: (1) a high quality viewer that can display axial, coronal, and sagittal tomographic images, maximum intensity projection images, structure contours, and isointensity contour lines or dose colorwash, (2) multi-image fusion allowing multiple images to be fused with VOI and dose distributions, (3) a suite of segmentation tools to edit and/or create tumor and organ VOIs, (4) dosimetry tools for several radioisotopes, (5) clinical tools for correcting acquisition errors, including patient orientation, and (6) the ability to save the resultant image and VOI as DICOM files or to export the numerical results as comma separated values files. Because the code is written in MATLAB™, it is highly readable and is easier for the coder to make changes compared to languages such as C or C++. In what follows, we describe the content of the new TriDFusion (3DF) image viewer software platform using examples of a number of clinical research workflows. Such examples vary in complexity but illustrate the main attributes of the software. CONCLUSIONS: In summary, 3DF provides a powerful, convenient, easy-to-use suite of open-source imaging research tools for the nuclear medicine community that allows physicians, medical physicists, and academic researchers to display, manipulate, and analyze images.

11.
Cardiovasc Intervent Radiol ; 45(7): 958-969, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35459960

RESUMO

PURPOSE: To determine how particle density affects dose distribution and outcomes after lobar radioembolization. METHODS: Matched pairs of patients, treated with glass versus resin microspheres, were selected by propensity score matching (114 patients), in this single-institution retrospective study. For each patient, tumor and liver particle density (particles/cm3) and dose (Gy) were determined. Tumor-to-normal ratio was measured on both 99mTc-MAA SPECT/CT and post-90Y bremsstrahlung SPECT/CT. Microdosimetry simulations were used to calculate first percentile dose, which is the dose in the cold spots between microspheres. Local progression-free survival (LPFS) and overall survival were analyzed. RESULTS: As more particles were delivered, doses on 90Y SPECT/CT became more uniform throughout the treatment volume: tumor and liver doses became more similar (p = 0.04), and microscopic cold spots between particles disappeared. For hypervascular tumors (tumor-to-normal ratio ≥ 2.6 on MAA scan), delivering fewer particles (< 6000 particles/cm3 treatment volume) was associated with better LPFS (p = 0.03). For less vascular tumors (tumor-to-normal ratio < 2.6), delivering more particles (≥ 6000 particles/cm3) was associated with better LPFS (p = 0.02). In matched pairs of patients, using the optimal particle density resulted in improved overall survival (11.5 vs. 6.8 months, p = 0.047), compared to using suboptimal particle density. Microdosimetry resulted in better predictions of LPFS (p = 0.03), and overall survival (p = 0.02), compared to conventional dosimetry. CONCLUSION: The number of particles delivered can be chosen to maximize the tumor dose and minimize the liver dose, based on tumor vascularity. Optimizing the particle density resulted in improved LPFS and overall survival.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Embolização Terapêutica/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Microesferas , Estudos Retrospectivos , Agregado de Albumina Marcado com Tecnécio Tc 99m , Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Ítrio/uso terapêutico
12.
PLoS One ; 17(4): e0266704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446848

RESUMO

PURPOSE: To devise a new body-habitus normalizer to be used in the calculation of an SUV that is specific to the PET tracer 18F-FDG. METHODS: A cohort of 481-patients was selected for analysis of 18F-FDG uptake into tissues unaffected by their disease. Among these, 65-patients had only brain concentrations measured and the remaining 416 were randomly divided into an 86-patient test set and a 330-patient training set. Within the test set, normal liver, spleen and blood measures were made. In the training set, only normal liver concentrations were measured. Using data from the training set, a simple polynomial function of height and weight was selected and optimized in a fitting procedure to predict each patient's mean liver %ID/ml. This function, when used as a normalizer, defines a new SUV metric (SUVfdg) which we compared to SUV metrics normalized by body weight (SUVbw), lean-body mass (SUVlbm) and body surface-area (SUVbsa) in a five-fold cross-validation. SUVfdg was also evaluated in the independent brain-only and whole-body test sets. RESULTS: For patients of all sizes including pediatric patients, the normal range of liver 18F-FDG uptake at 60 minutes post injection in units of SUVfdg is 1.0 ± 0.16. Liver, blood, and spleen SUVfdg in all comparisons had lower coefficients of variation compared to SUVbw SUVlbm and SUVbsa. Blood had a mean SUVfdg of 0.8 ± 0.11 and showed no correlation with age, height, or weight. Brain SUVfdg measures were significantly higher (P<0.01) in pediatric patients (4.7 ± 0.9) compared to adults (3.1 ± 0.6). CONCLUSION: A new SUV metric, SUVfdg, is proposed. It is hoped that SUVfdg will prove to be better at classifying tumor lesions compared to SUV metrics in current use. Other tracers may benefit from similarly tracer-specific body habitus normalizers.


Assuntos
Fluordesoxiglucose F18 , Neoplasias , Adulto , Estatura , Superfície Corporal , Criança , Estudos de Coortes , Humanos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
13.
Pharmacol Res Perspect ; 10(2): e00898, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257504

RESUMO

Previously published digital autoradiography of 3 H-labeled capecitabine reveals a near-uniform distribution of activity throughout a murine pancreatic model. This is in contrast both to 14 C-labeled gemcitabine, and established expectations, as the dense stroma of pancreatic cancer is understood to inhibit drug penetration. Capecitabine is a pro-drug for 5 FU. The positioning of the radiolabel on capecitabine leaves open the possibility that much of the autoradiographic signal is generated by nontoxic compounds. Studies were performed on tumors derived via organoid culture from a murine KPC tumor. As before, we performed autoradiography comparing 3 H capecitabine to the gemcitabine analog 18 F-FAC. The metabolism of capecitabine in this model was studied through LC-MS of tumor tissue. The autoradiographs confirmed that the 3 H label from capecitabine was much more uniformly distributed through the tumor than the 18 F from the gemcitabine analog. LC-MS revealed that approximately 75% of the molar mass of capecitabine had been converted into 5 FU or pre-5 FU compounds. The remainder had been converted into nontoxic species. Therapeutically relevant capecitabine metabolites achieve a relatively even distribution in this pancreatic cancer model, in contrast to the gemcitabine analog 18 F-FAC. In a human xenograft model, (BxPC3), the 3 H label from capecitabine was also uniformly spread across the tumor autoradiographs. However, at 2 h post-administration the metabolism of capecitabine had proceeded further and the bulk of the agent was in the form of nontoxic species.


Assuntos
Neoplasias Pancreáticas , Pró-Fármacos , Animais , Autorradiografia , Capecitabina , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
14.
J Nucl Cardiol ; 29(6): 3179-3188, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34993893

RESUMO

BACKGROUND: I-123 meta-iodobenzylguanidine (MIBG) imaging has long been employed to noninvasively assess the integrity of human norepinephrine transporter-1 and, hence, myocardial sympathetic innervation. Positron-emitting F-18 meta-fluorobenzylguanidine (MFBG) has recently been developed for potentially superior quantitative characterization. We assessed the feasibility of MFBG imaging of myocardial sympathetic innervation. METHODS: 16 patients were imaged with MFBG PET (30-minute dynamic imaging of chest, followed by 3 whole-body acquisitions between 30 minutes and 4-hour post-injection). Blood kinetics were assessed from multiple samples. Pharmacokinetic modeling with reversible 1- and 2-compartment models was performed. Kinetic rate constants were re-calculated from truncated datasets. All patients underwent concurrent MIBG SPECT. RESULTS: MFBG myocardial uptake was rapid and sustained; the mean standardized uptake value (SUV (mean ± standard deviation)) was 5.1 ± 2.2 and 3.4 ± 1.9 at 1 hour and 3-4-hour post-injection, respectively. The mean K1 and distribution volume (VT) were 1.1 ± 0.6 mL/min/g and 34 ± 22 mL/cm3, respectively. Both were reproducible when re-calculated from truncated 1-hour datasets (Intraclass Correlation Coefficient of 0.99 and 0.91, respectively). Spearman's ϱ = 0.86 between MFBG SUV and VT and 0.80 between MFBG PET-derived VT and MIBG SPECT-derived heart-to-mediastinum activity concentration ratio. CONCLUSION: MFBG is a promising PET radiotracer for the assessment of myocardial sympathetic innervation.


Assuntos
3-Iodobenzilguanidina , Compostos Radiofarmacêuticos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Miocárdio , Sistema Nervoso Simpático/diagnóstico por imagem , Coração/diagnóstico por imagem , Coração/inervação
15.
J Nucl Med ; 63(7): 1094-1100, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34857661

RESUMO

The aim of this study was to assess the pharmacokinetics, biodistribution, and radiation dosimetry of 124I-omburtamab administered intraperitoneally in patients with desmoplastic small round cell tumor. Methods: Eligible patients diagnosed with desmoplastic small round cell tumor with peritoneal involvement were enrolled in a phase I trial of intraperitoneal radioimmunotherapy with 131I-omburtamab. After thyroid blockade and before radioimmunotherapy, patients received approximately 74 MBq of 124I-omburtamab intraperitoneally. Five serial PET/CT scans were obtained up to 144 h after injection. Multiple blood samples were obtained up to 120 h after injection. Organ-absorbed doses were calculated with OLINDA/EXM. Results: Thirty-one patients were studied. Blood pharmacokinetics exhibited a biphasic pattern consisting of an initial rising phase with a median half-time (±SD) of 23 ± 15 h and a subsequent falling phase with a median half-time of 56 ± 34 h. Peritoneal distribution was heterogeneous and diffuse in most patients. Self-dose to the peritoneal cavity was 0.58 ± 0.19 mGy/MBq. Systemic distribution and activity in major organs were low. The median absorbed doses were 0.72 ± 0.23 mGy/MBq for liver, 0.48 ± 0.17 mGy/MBq for spleen, and 0.57 ± 0.12 mGy/MBq for kidneys. The mean effective dose was 0.31 ± 0.10 mSv/MBq. Whole-body and peritoneal cavity biologic half-times were 45 ± 9 and 24 ± 5 h, respectively. Conclusion: PET/CT imaging with intraperitoneally administered 124I-omburtamab enables assessment of intraperitoneal distribution and estimation of absorbed dose to peritoneal space and normal organs before therapy.


Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Tomografia por Emissão de Pósitrons , Anticorpos Monoclonais/farmacocinética , Tumor Desmoplásico de Pequenas Células Redondas/diagnóstico por imagem , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Humanos , Radioisótopos do Iodo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Distribuição Tecidual
16.
Cancers (Basel) ; 13(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359810

RESUMO

The present study aimed to investigate the correlation at pre-treatment (TX) between quantitative metrics derived from multimodality imaging (MMI), including 18F-FDG-PET/CT, 18F-FMISO-PET/CT, DW- and DCE-MRI, using a community detection algorithm (CDA) in head and neck squamous cell carcinoma (HNSCC) patients. Twenty-three HNSCC patients with 27 metastatic lymph nodes underwent a total of 69 MMI exams at pre-TX. Correlations among quantitative metrics derived from FDG-PET/CT (SUL), FMSIO-PET/CT (K1, k3, TBR, and DV), DW-MRI (ADC, IVIM [D, D*, and f]), and FXR DCE-MRI [Ktrans, ve, and τi]) were investigated using the CDA based on a "spin-glass model" coupled with the Spearman's rank, ρ, analysis. Mean MRI T2 weighted tumor volumes and SULmean values were moderately positively correlated (ρ = 0.48, p = 0.01). ADC and D exhibited a moderate negative correlation with SULmean (ρ ≤ -0.42, p < 0.03 for both). K1 and Ktrans were positively correlated (ρ = 0.48, p = 0.01). In contrast, Ktrans and k3max were negatively correlated (ρ = -0.41, p = 0.03). CDA revealed four communities for 16 metrics interconnected with 33 edges in the network. DV, Ktrans, and K1 had 8, 7, and 6 edges in the network, respectively. After validation in a larger population, the CDA approach may aid in identifying useful biomarkers for developing individual patient care in HNSCC.

17.
EJNMMI Phys ; 8(1): 50, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34250566

RESUMO

BACKGROUND: The goal of this work was to determine the quantitative accuracy and optimal reconstruction parameters for 124I-PET imaging in the presence of therapeutic levels of 131I. In this effort, images were acquired on a GE D710 PET/CT scanner using a NEMA IEC phantom with spheres containing 124I and increasing amounts of 131I activity in the background. At each activity level, two scans were acquired, one with the phantom centered in the field of view (FOV) and one 11.2 cm off-center. Reconstructions used an ordered subset expectation maximization algorithm with up to 100 iterations of 16 subsets, with and without time-of-flight (TOF) information. Results were evaluated visually and by comparing the 124I activity relative to the scan performed in the absence of 131I. RESULTS: 131I within the FOV added to the randoms rate, to dead time, and to pile-up within the detectors. Using our standard clinical reconstruction parameters, the image quality and quantitative accuracy suffered at 131I activities above 1.4 GBq. Convergence rates slowed progressively in the presence of increasing amounts of 131I for both TOF and nonTOF reconstructions. TOF reconstructions converged more quickly than nonTOF but often towards erroneous concentrations. Iterating nonTOF reconstructions to convergence produced quantitatively accurate images except for the off-center phantom at the very highest level of background 131I tested. CONCLUSIONS: This study shows that quantitative PET is feasible in the presence of large amounts of 131I. The high randoms fractions resulted in slow reconstruction convergence and negatively impacted TOF corrections and/or the accuracy of TOF information. Therefore, increased iterations and nonTOF reconstructions are recommended.

18.
Breast Cancer Res Treat ; 188(2): 415-425, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34109515

RESUMO

PURPOSE: Sorafenib has demonstrated anti-tumor efficacy and radiosensitizing activity preclinically and in breast cancer. We examined sorafenib in combination with whole brain radiotherapy (WBRT) and explored the [18F] 3'deoxy-3'-fluorothymidine (FLT)-PET as a novel brain imaging modality in breast cancer brain metastases. METHODS: A phase I trial of WBRT + sorafenib was conducted using a 3 + 3 design with safety-expansion cohort. Sorafenib was given daily at the start of WBRT for 21 days. The primary endpoints were to determine a maximum tolerated dose (MTD) and to evaluate safety and toxicity. The secondary endpoint was CNS progression-free survival (CNS-PFS). MacDonald Criteria were used for response assessment with a correlative serial FLT-PET imaging study. RESULTS: 13 pts were evaluable for dose-limiting toxicity (DLT). DLTs were grade 4 increased lipase at 200 mg (n = 1) and grade 3 rash at 400 mg (n = 3). The MTD was 200 mg. The overall response rate was 71%. Median CNS-PFS was 12.8 months (95%CI: 6.7-NR). A total of 15 pts (10 WBRT + sorafenib and 5 WBRT) were enrolled in the FLT-PET study: baseline (n = 15), 7-10 days post WBRT (FU1, n = 14), and an additional 12 week (n = 9). A decline in average SUVmax of ≥ 25% was seen in 9/10 (90%) of WBRT + sorafenib patients and 2/4 (50%) of WBRT only patients. CONCLUSIONS: Concurrent WBRT and sorafenib appear safe at 200 mg daily dose with clinical activity. CNS response was favorable compared to historical controls. This combination should be considered for further efficacy evaluation. FLT-PET may be useful as an early response imaging tool for brain metastases. TRIAL AND CLINICAL REGISTRY: Trial registration numbers and dates: NCT01724606 (November 12, 2012) and NCT01621906 (June 18, 2012).


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Neuroimagem , Tomografia por Emissão de Pósitrons , Sorafenibe
19.
EJNMMI Res ; 11(1): 38, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33855685

RESUMO

PURPOSE: Glycolysis is increased by hypoxia, suggesting a possible correlation between the accumulation of 2-[18F]fluoro-2-deoxy-D-glucose (FDG) in malignant tumors and regional hypoxia defined by 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole (FMISO) PET. The aim of this study is to investigate the intra-tumoral spatial distribution and quantitative relationship between FDG and FMISO in a cohort of head and neck squamous cell cancer (HNSCC) patients. METHODS: Twenty HNSCC patients with 20 primary tumors and 19 metastatic lymph nodes (LNs) underwent FDG and FMISO PET within 1 week. The metabolic target volume (MTV) was defined on the FDG PET images using a region growing algorithm. The hypoxic volume (HV) was defined by the volume of voxels in an FMISO image within the MTV that satisfy a tumor-to-blood ratio (T/B) greater than 1.2. FDG and FMISO lesions were co-registered, and a voxel-by-voxel correlation between the two datasets was performed. FDG and FMISO TVs' SUVs were also compared as well as the intra-tumoral homogeneity of the two radiotracers. Separate analysis was performed for the primary tumors and LNs. RESULTS: Twenty-six percent of the primary tumors and 15% of LNs showed a strong correlation (R > 0.7) between FDG and FMISO intra-tumor distributions when considering the MTV. For the HV, only 19% of primary tumors and 12% of LN were strongly correlated. A weak and moderate correlation existed between the two markers SUVavg, and SUVmax in the case of the primary tumors, respectively. However, this was not the case for the LNs. Good concordances were also observed between the primary tumor's and LNs HV SUVavgs as well as between the corresponding hypoxic fractions (HF's). CONCLUSIONS: A moderate correlation between FDG and hypoxia radiotracer distribution, as measured by FMISO, seems to exist for primary tumors. However, discordant results were found in the case of LNs. Hypoxia appears to be the dominant driver of high FDG uptake in selected tumors only, and therefore FDG PET images cannot be used as a universal surrogate to identify or predict intra-tumor hypoxia.

20.
J Natl Cancer Inst ; 113(6): 742-751, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429428

RESUMO

BACKGROUND: Patients with human papillomavirus-related oropharyngeal cancers have excellent outcomes but experience clinically significant toxicities when treated with standard chemoradiotherapy (70 Gy). We hypothesized that functional imaging could identify patients who could be safely deescalated to 30 Gy of radiotherapy. METHODS: In 19 patients, pre- and intratreatment dynamic fluorine-18-labeled fluoromisonidazole positron emission tomography (PET) was used to assess tumor hypoxia. Patients without hypoxia at baseline or intratreatment received 30 Gy; patients with persistent hypoxia received 70 Gy. Neck dissection was performed at 4 months in deescalated patients to assess pathologic response. Magnetic resonance imaging (weekly), circulating plasma cell-free DNA, RNA-sequencing, and whole-genome sequencing (WGS) were performed to identify potential molecular determinants of response. Samples from an independent prospective study were obtained to reproduce molecular findings. All statistical tests were 2-sided. RESULTS: Fifteen of 19 patients had no hypoxia on baseline PET or resolution on intratreatment PET and were deescalated to 30 Gy. Of these 15 patients, 11 had a pathologic complete response. Two-year locoregional control and overall survival were 94.4% (95% confidence interval = 84.4% to 100%) and 94.7% (95% confidence interval = 85.2% to 100%), respectively. No acute grade 3 radiation-related toxicities were observed. Microenvironmental features on serial imaging correlated better with pathologic response than tumor burden metrics or circulating plasma cell-free DNA. A WGS-based DNA repair defect was associated with response (P = .02) and was reproduced in an independent cohort (P = .03). CONCLUSIONS: Deescalation of radiotherapy to 30 Gy on the basis of intratreatment hypoxia imaging was feasible, safe, and associated with minimal toxicity. A DNA repair defect identified by WGS was predictive of response. Intratherapy personalization of chemoradiotherapy may facilitate marked deescalation of radiotherapy.


Assuntos
Neoplasias Orofaríngeas , Quimiorradioterapia/métodos , Humanos , Neoplasias Orofaríngeas/radioterapia , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Dosagem Radioterapêutica , Hipóxia Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...