Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
3.
Plants (Basel) ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235360

RESUMO

Recent breeding efforts in Brassica have focused on the development of new oilseed feedstock crop for biofuels (e.g., ethanol, biodiesel, bio-jet fuel), bio-industrial uses (e.g., bio-plastics, lubricants), specialty fatty acids (e.g., erucic acid), and producing low glucosinolates levels for oilseed and feed meal production for animal consumption. We identified a novel opportunity to enhance the availability of nutritious, fresh leafy greens for human consumption. Here, we demonstrated the efficacy of disarming the 'mustard bomb' reaction in reducing pungency upon the mastication of fresh tissue-a major source of unpleasant flavor and/or odor in leafy Brassica. Using gene-specific mutagenesis via CRISPR-Cas12a, we created knockouts of all functional copies of the type-I myrosinase multigene family in tetraploid Brassica juncea. Our greenhouse and field trials demonstrate, via sensory and biochemical analyses, a stable reduction in pungency in edited plants across multiple environments. Collectively, these efforts provide a compelling path toward boosting the human consumption of nutrient-dense, fresh, leafy green vegetables.

4.
Plant Biotechnol J ; 16(7): 1275-1282, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29223136

RESUMO

Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Manihot/genética , Alelos , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos/genética , Glicina/farmacologia , Manihot/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Glifosato
5.
New Phytol ; 213(4): 1632-1641, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28116755

RESUMO

Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.


Assuntos
Produtos Agrícolas/genética , Abastecimento de Alimentos , Perfilação da Expressão Gênica , Manihot/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Mol Plant Pathol ; 18(1): 55-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26821568

RESUMO

Xanthomonas spp. reduce crop yields and quality worldwide. During infection of their plant hosts, many strains secrete transcription activator-like (TAL) effectors, which enter the host cell nucleus and activate specific corresponding host genes at effector binding elements (EBEs) in the promoter. TAL effectors may contribute to disease by activating the expression of susceptibility genes or trigger resistance associated with the hypersensitive reaction (HR) by activating an executor resistance (R) gene. The rice bacterial leaf streak pathogen X. oryzae pv. oryzicola (Xoc) is known to suppress host resistance, and no host R gene has been identified against it, despite considerable effort. To further investigate Xoc suppression of host resistance, we conducted a screen of effectors from BLS256 and identified Tal2a as an HR elicitor in rice when delivered heterologously by a strain of the closely related rice bacterial blight pathogen X. oryzae pv. oryzae (Xoo) or by the soybean pathogen X. axonopodis pv. glycines. The HR required the Tal2a activation domain, suggesting an executor R gene. Tal2a activity was differentially distributed among geographically diverse Xoc isolates, being largely conserved among Asian isolates. We identified four genes induced by Tal2a in next-generation RNA sequencing experiments and confirmed them using quantitative real-time reverse transcription-polymerase chain reaction (qPCR). However, neither individual nor collective activation of these genes by designer TAL effectors resulted in HR. A tal2a knockout mutant of BLS256 showed virulence comparable with the wild-type, but plasmid-based overexpression of tal2a at different levels in the wild-type reduced virulence in a directly corresponding way. Overall, the results reveal that host resistance suppression by Xoc plays a critical role in pathogenesis. Further, the dose-dependent avirulence activity of Tal2a and the apparent lack of a single canonical target that accounts for HR point to a novel, activation domain-dependent mode of action, which might involve, for example, a non-coding gene or a specific pattern of activation across multiple targets.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência à Doença , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/metabolismo , Proteínas de Bactérias/química , Geografia , Oryza/enzimologia , Oryza/genética , Domínios Proteicos , Efetores Semelhantes a Ativadores de Transcrição/química , Ubiquitina Tiolesterase , Virulência , Xanthomonas/patogenicidade
7.
Nat Plants ; 1(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34824864

RESUMO

To reduce crop losses due to geminivirus infection, we targeted the bean yellow dwarf virus (BeYDV) genome for destruction with the CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) system. Transient assays using BeYDV-based replicons revealed that CRISPR-Cas reagents introduced mutations within the viral genome and reduced virus copy number. Transgenic plants expressing CRISPR-Cas reagents and challenged with BeYDV had reduced virus load and symptoms, thereby demonstrating a novel strategy for engineering resistance to geminiviruses.

8.
PLoS One ; 8(12): e82120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312634

RESUMO

TAL effectors are re-targetable transcription factors used for tailored gene regulation and, as TAL effector-nuclease fusions (TALENs), for genome engineering. Their hallmark feature is a customizable central string of polymorphic amino acid repeats that interact one-to-one with individual DNA bases to specify the target. Sequences targeted by TAL effector repeats in nature are nearly all directly preceded by a thymine (T) that is required for maximal activity, and target sites for custom TAL effector constructs have typically been selected with this constraint. Multiple crystal structures suggest that this requirement for T at base 0 is encoded by a tryptophan residue (W232) in a cryptic repeat N-terminal to the central repeats that exhibits energetically favorable van der Waals contacts with the T. We generated variants based on TAL effector PthXo1 with all single amino acid substitutions for W232. In a transcriptional activation assay, many substitutions altered or relaxed the specificity for T and a few were as active as wild type. Some showed higher activity. However, when replicated in a different TAL effector, the effects of the substitutions differed. Further, the effects differed when tested in the context of a TALEN in a DNA cleavage assay, and in a TAL effector-DNA binding assay. Substitution of the N-terminal region of the PthXo1 construct with that of one of the TAL effector-like proteins of Ralstonia solanacearum, which have arginine in place of the tryptophan, resulted in specificity for guanine as the 5' base but low activity, and several substitutions for the arginine, including tryptophan, destroyed activity altogether. Thus, the effects on specificity and activity generated by substitutions at the W232 (or equivalent) position are complex and context dependent. Generating TAL effector scaffolds with high activity that robustly accommodate sites without a T at position 0 may require larger scale re-engineering.


Assuntos
Substituição de Aminoácidos , DNA/química , DNA/metabolismo , Sequências Repetitivas de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triptofano , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Ralstonia solanacearum , Especificidade por Substrato , Fatores de Transcrição/genética
9.
New Phytol ; 196(4): 1197-1207, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23078195

RESUMO

Genomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes. Some activate disease resistance genes. The roles of X. oryzae TAL effectors in diverse rice backgrounds, however, are poorly understood. Xoo TAL effectors that promote infection by activating SWEET sucrose transporter genes were expressed in TAL effector-deficient X. oryzae strain X11-5A, and assessed in 21 rice varieties. Some were also tested in Xoc on variety Nipponbare. Several Xoc TAL effectors were tested in X11-5A on four rice varieties. Xoo TAL effectors enhanced X11-5A virulence on most varieties, but to varying extents depending on the effector and variety. SWEET genes were activated in all tested varieties, but increased virulence did not correlate with activation level. SWEET activators also enhanced Xoc virulence on Nipponbare. Xoc TAL effectors did not alter X11-5A virulence. SWEET-targeting TAL effectors contribute broadly and non-tissue-specifically to virulence in rice, and their function is affected by host differences besides target sequences. Further, the utility of X11-5A for characterizing individual TAL effectors in rice was established.


Assuntos
Proteínas de Bactérias/genética , Oryza/genética , Fatores de Transcrição/genética , Xanthomonas/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Resistência à Doença , Interações Hospedeiro-Patógeno/genética , Dados de Sequência Molecular , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Virulência/genética
10.
New Phytol ; 195(4): 883-893, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22747776

RESUMO

Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Transativadores/metabolismo , Xanthomonas/fisiologia , Sistemas de Secreção Bacterianos/genética , Sequência de Bases , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Dados de Sequência Molecular , Mutagênese Insercional , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Especificidade da Espécie , Sítio de Iniciação de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...