Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36325991

RESUMO

In the developing hindbrain, facial branchiomotor (FBM) neurons migrate caudally from rhombomere 4 (r4) to r6 to establish the circuit that drives jaw movements. Although the mechanisms regulating initiation of FBM neuron migration are well defined, those regulating directionality are not. In mutants lacking the Wnt/planar cell polarity (PCP) component Celsr1, many FBM neurons inappropriately migrate rostrally into r3. We hypothesized that Celsr1 normally blocks inappropriate rostral migration of FBM neurons by suppressing chemoattraction towards Wnt5a in r3 and successfully tested this model. First, FBM neurons in Celsr1; Wnt5a double mutant embryos never migrated rostrally, indicating that inappropriate rostral migration in Celsr1 mutants results from Wnt5a-mediated chemoattraction, which is suppressed in wild-type embryos. Second, FBM neurons migrated rostrally toward Wnt5a-coated beads placed in r3 of wild-type hindbrain explants, suggesting that excess Wnt5a chemoattractant can overcome endogenous Celsr1-mediated suppression. Third, rostral migration of FBM neurons was greatly enhanced in Celsr1 mutants overexpressing Wnt5a in r3. These results reveal a novel role for a Wnt/PCP component in regulating neuronal migration through suppression of chemoattraction.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores , Neurônios Motores/fisiologia , Rombencéfalo , Polaridade Celular , Movimento Celular/genética
2.
Front Neural Circuits ; 15: 690475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248505

RESUMO

Precise positioning of neurons resulting from cell division and migration during development is critical for normal brain function. Disruption of neuronal migration can cause a myriad of neurological disorders. To investigate the functional consequences of defective neuronal positioning on circuit function, we studied a zebrafish frizzled3a (fzd3a) loss-of-function mutant off-limits (olt) where the facial branchiomotor (FBM) neurons fail to migrate out of their birthplace. A jaw movement assay, which measures the opening of the zebrafish jaw (gape), showed that the frequency of gape events, but not their amplitude, was decreased in olt mutants. Consistent with this, a larval feeding assay revealed decreased food intake in olt mutants, indicating that the FBM circuit in mutants generates defective functional outputs. We tested various mechanisms that could generate defective functional outputs in mutants. While fzd3a is ubiquitously expressed in neural and non-neural tissues, jaw cartilage and muscle developed normally in olt mutants, and muscle function also appeared to be unaffected. Although FBM neurons were mispositioned in olt mutants, axon pathfinding to jaw muscles was unaffected. Moreover, neuromuscular junctions established by FBM neurons on jaw muscles were similar between wildtype siblings and olt mutants. Interestingly, motor axons innervating the interhyoideus jaw muscle were frequently defasciculated in olt mutants. Furthermore, GCaMP imaging revealed that mutant FBM neurons were less active than their wildtype counterparts. These data show that aberrant positioning of FBM neurons in olt mutants is correlated with subtle defects in fasciculation and neuronal activity, potentially generating defective functional outputs.


Assuntos
Neurônios Motores , Peixe-Zebra , Animais , Axônios , Movimento Celular , Neurogênese , Proteínas de Peixe-Zebra/genética
3.
Mech Dev ; 152: 1-12, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777776

RESUMO

Contactin2 (Cntn2)/Transient Axonal Glycoprotein 1 (Tag1), a neural cell adhesion molecule, has established roles in neuronal migration and axon fasciculation in chick and mouse. In zebrafish, antisense morpholino-based studies have indicated roles for cntn2 in the migration of facial branchiomotor (FBM) neurons, the guidance of the axons of the nucleus of the medial longitudinal fascicle (nucMLF), and the outgrowth of Rohon-Beard (RB) central axons. To study functions of Cntn2 in later stages of neuronal development, we generated cntn2 mutant zebrafish using CRISPR-Cas9. Using a null mutant allele, we detected genetic interactions between cntn2 and the planar cell polarity gene vangl2, as shown previously with cntn2 morphants, demonstrating a function for cntn2 during FBM neuron migration in a sensitized background of reduced planar cell polarity signaling. In addition, maternal-zygotic (MZ) cntn2 mutant larvae exhibited aberrant touch responses and swimming, suggestive of defects in sensorimotor circuits, consistent with studies in mice. However, the nucMLF axon convergence, FBM neuron migration, and RB outgrowth defects seen in morphants were not seen in the mutants, and we show here that they are likely off-target effects of morpholinos. However, MLF axons exhibited local defasciculation in MZcntn2 mutants, consistent with a role for Cntn2 in axon fasciculation. These data demonstrate distinct roles for zebrafish cntn2 in neuronal migration and axon fasciculation, and in the function of sensorimotor circuits.


Assuntos
Adesão Celular/genética , Contactina 2/genética , Neurogênese/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Axônios/metabolismo , Sistemas CRISPR-Cas , Movimento Celular/genética , Polaridade Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Morfolinos/genética , Morfolinos/metabolismo , Neurônios Motores/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...