Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33252036

RESUMO

Subcellular compartmentalisation is necessary for eukaryotic cell function. Spatial and temporal regulation of kinesin activity is essential for building these local environments via control of intracellular cargo distribution. Kinesin-binding protein (KBP) interacts with a subset of kinesins via their motor domains, inhibits their microtubule (MT) attachment, and blocks their cellular function. However, its mechanisms of inhibition and selectivity have been unclear. Here we use cryo-electron microscopy to reveal the structure of KBP and of a KBP-kinesin motor domain complex. KBP is a tetratricopeptide repeat-containing, right-handed α-solenoid that sequesters the kinesin motor domain's tubulin-binding surface, structurally distorting the motor domain and sterically blocking its MT attachment. KBP uses its α-solenoid concave face and edge loops to bind the kinesin motor domain, and selected structure-guided mutations disrupt KBP inhibition of kinesin transport in cells. The KBP-interacting motor domain surface contains motifs exclusively conserved in KBP-interacting kinesins, suggesting a basis for kinesin selectivity.


Assuntos
Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/ultraestrutura , Microscopia Crioeletrônica , Humanos , Cinesinas/química , Cinesinas/ultraestrutura
2.
EMBO Rep ; 20(11): e47732, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486213

RESUMO

Crosstalk between the actin and microtubule cytoskeletons underlies cellular morphogenesis. Interactions between actin filaments and microtubules are particularly important for establishing the complex polarized morphology of neurons. Here, we characterized the neuronal function of growth arrest-specific 2-like 1 (Gas2L1), a protein that can directly bind to actin, microtubules and microtubule plus-end-tracking end binding proteins. We found that Gas2L1 promotes axon branching, but restricts axon elongation in cultured rat hippocampal neurons. Using pull-down experiments and in vitro reconstitution assays, in which purified Gas2L1 was combined with actin and dynamic microtubules, we demonstrated that Gas2L1 is autoinhibited. This autoinhibition is relieved by simultaneous binding to actin filaments and microtubules. In neurons, Gas2L1 primarily localizes to the actin cytoskeleton and functions as an actin stabilizer. The microtubule-binding tail region of Gas2L1 directs its actin-stabilizing activity towards the axon. We propose that Gas2L1 acts as an actin regulator, the function of which is spatially modulated by microtubules.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Biomarcadores , Células COS , Chlorocebus aethiops , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Imagem Molecular , Neuritos/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Células Piramidais/citologia , Células Piramidais/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA