Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(22): 13763-13772, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612289

RESUMO

In recent years, the dielectric constant (εr) of organic semiconductors (OSCs) has been of interest in the organic photovoltaic (OPV) community due to its potential influence on the exciton binding energy. Despite progress in the design of high εr OSCs and the accurate measurement of the εr, the effects of the synthetic strategies on specific (opto)electronic properties of the OSCs remain uncertain. In this contribution, the effects of εr on the optical properties of five new C70 derivatives and [70]PCBM are investigated. Together with [70]PCBM, the derivatives have a range of εr values that depend on the polarity and length of the side chains. The properties of the singlet excitons are investigated in detail with steady-state and time-resolved spectroscopy and the exciton diffusion length is measured. All six derivatives show similar photophysical properties in the neat films. However, large differences in the crystallinity of the fullerene films influence the exciton dynamics in blend films. This work shows that design principles for OSCs with a higher εr can have a very different influence on the performance of traditional BHJ devices and in neat films and it is important to consider the neat film properties when investigating the optoelectronic properties of new materials for OPV.

2.
J Mater Chem C Mater ; 9(45): 16217-16225, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34912563

RESUMO

For many years, fullerene derivatives have been the main n-type material of organic electronics and optoelectronics. Recently, fullerene derivatives functionalized with ethylene glycol (EG) side chains have been showing important properties such as enhanced dielectric constants, facile doping and enhanced self-assembly capabilities. Here, we have prepared field-effect transistors using a series of these fullerene derivatives equipped with EG side chains of different lengths. Transport data show the beneficial effect of increasing the EG side chain. In order to understand the material properties, full structural determination of these fullerene derivatives has been achieved by coupling the X-ray data with molecular dynamics (MD) simulations. The increase in transport properties is paired with the formation of extended layered structures, efficient molecular packing and an increase in the crystallite alignment. The layer-like structure is composed of conducting layers, containing of closely packed C60 balls approaching the inter-distance of 1 nm, that are separated by well-defined EG layers, where the EG chains are rather splayed with the chain direction almost perpendicular to the layer normal. Such a layered structure appears highly ordered and highly aligned with the C60 planes oriented parallel to the substrate in the thin film configuration. The order inside the thin film increases with the EG chain length, allowing the systems to achieve mobilities as high as 0.053 cm2 V-1 s-1. Our work elucidates the structure of these interesting semiconducting organic molecules and shows that the synergistic use of X-ray structural analysis and MD simulations is a powerful tool to identify the structure of thin organic films for optoelectronic applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34132516

RESUMO

Molecular doping makes possible tunable electronic properties of organic semiconductors, yet a lack of control of the doping process narrows its scope for advancing organic electronics. Here, we demonstrate that the molecular doping process can be improved by introducing a neutral radical molecule, namely nitroxyl radical (2,2,6,6-teramethylpiperidin-i-yl) oxyl (TEMPO). Fullerene derivatives are used as the host and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazoles (DMBI-H) as the n-type dopant. TEMPO can abstract a hydrogen atom from DMBI-H and transform the latter into a much stronger reducing agent DMBI•, which efficiently dopes the fullerene derivative to yield an electrical conductivity of 4.4 S cm-1. However, without TEMPO, the fullerene derivative is only weakly doped likely by a hydride transfer following by an inefficient electron transfer. This work unambiguously identifies the doping pathway in fullerene derivative/DMBI-H systems in the presence of TEMPO as the transfer of a hydrogen atom accompanied by electron transfer. In the absence of TEMPO, the doping process inevitably leads to the formation of less symmetrical hydrogenated fullerene derivative anions or radicals, which adversely affect the molecular packing. By adding TEMPO we can exclude the formation of such species and, thus, improve charge transport. In addition, a lower temperature is sufficient to meet an efficient doping process in the presence of TEMPO. Thereby, we provide an extra control of the doping process, enabling enhanced thermoelectric performance at a low processing temperature.

4.
Adv Mater ; 33(4): e2006109, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33326147

RESUMO

The reconfiguration of molecular tunneling junctions during operation via the self-assembly of bilayers of glycol ethers is described. Well-established functional groups are used to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements confirm that rectification occurs by the expected bias-dependent tunneling-hopping mechanism for these functional groups and that glycol ethers, besides being an unusually efficient tunneling medium, behave similarly to alkanes. Memory bits are fabricated from crossbar junctions prepared by injecting eutectic Ga-In (EGaIn) into microfluidic channels. The states of two 8-bit registers were set by trains of droplets such that they are able to perform logical AND operations on bit strings encoded into chemical packets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof-of-concept work demonstrates the potential for fieldable devices based on molecular tunneling junctions comprising self-assembled monolayers and bilayers.

5.
ACS Appl Mater Interfaces ; 12(50): 56222-56230, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33263385

RESUMO

High electrical conductivity is a prerequisite for improving the performance of organic semiconductors for various applications and can be achieved through molecular doping. However, often the conductivity is enhanced only up to a certain optimum doping concentration, beyond which it decreases significantly. We combine analytical work and Monte Carlo simulations to demonstrate that carrier-carrier interactions can cause this conductivity decrease and reduce the maximum conductivity by orders of magnitude, possibly in a broad range of materials. Using Monte Carlo simulations, we disentangle the effect of carrier-carrier interactions from carrier-dopant interactions. Coulomb potentials of ionized dopants are shown to decrease the conductivity, but barely influence the trend of conductivity versus doping concentration. We illustrate these findings using a doped fullerene derivative for which we can correctly estimate the carrier density at which the conductivity maximizes. We use grazing-incidence wide-angle X-ray scattering to show that the decrease of the conductivity cannot be explained by changes to the microstructure. We propose the reduction of carrier-carrier interactions as a strategy to unlock higher-conductivity organic semiconductors.

6.
Nat Commun ; 11(1): 5694, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173050

RESUMO

The 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly 'phonon glasses'. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being 'electron crystals'. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic 'PGEC' thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm-1 and an ultralow thermal conductivity of <0.1 Wm-1K-1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use 'arm-shaped' double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.

7.
Nat Mater ; 19(3): 330-337, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31959952

RESUMO

Self-assembled monolayers (SAMs) are widely used to engineer the surface properties of metals. The relatively simple and versatile chemistry of metal-thiolate bonds makes thiolate SAMs the preferred option in a range of applications, yet fragility and a tendency to oxidize in air limit their long-term use. Here, we report the formation of thiol-free self-assembled mono- and bilayers of glycol ethers, which bind to the surface of coinage metals through the spontaneous chemisorption of glycol ether-functionalized fullerenes. As-prepared assemblies are bilayers presenting fullerene cages at both the substrate and ambient interface. Subsequent exposure to functionalized glycol ethers displaces the topmost layer of glycol ether-functionalized fullerenes, and the resulting assemblies expose functional groups to the ambient interface. These layers exhibit the key properties of thiolate SAMs, yet they are stable to ambient conditions for several weeks, as shown by the performance of tunnelling junctions formed from SAMs of alkyl-functionalized glycol ethers. Glycol ether-functionalized spiropyrans incorporated into mixed monolayers lead to reversible, light-driven conductance switching. Self-assemblies of glycol ethers are drop-in replacements for thiolate SAMs that retain all of their useful properties while avoiding the drawbacks of metal-thiolate bonds.

8.
Chem Mater ; 30(16): 5527-5533, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30197469

RESUMO

A method for accurately measuring the relative dielectric constant (εr) of thin films of soft, organic materials is described. The effects of the bombardment of these materials with hot Al atoms, the most commonly used top electrode, are mitigated by using electrodes fabricated from eutectic gallium-indium (EGaIn). The geometry of the electrode is defined by injection into microchannels to form stable structures that are nondamaging and that conform to the topology of the organic thin film. The εr of a series of references and new organic materials, polymers, and fullerene derivatives was derived from impedance spectroscopy measurements for both Al and EGaIn electrodes showing the specific limitations of Al with soft, organic materials and overcoming them with EGaIn to determine their dielectric properties and provide realistic values of εr.

9.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29325212

RESUMO

In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.

10.
ACS Appl Mater Interfaces ; 9(32): 27290-27297, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28745040

RESUMO

The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

11.
Adv Mater ; 29(36)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28722288

RESUMO

In this contribution, for the first time, the polarity of fullerene derivatives is tailored to enhance the miscibility between the host and dopant molecules. A fullerene derivative with a hydrophilic triethylene glycol type side chain (PTEG-1) is used as the host and (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine n-DMBI) as the dopant. Thereby, the doping efficiency can be greatly improved to around 18% (<1% for a nonpolar reference sample) with optimized electrical conductivity of 2.05 S cm-1 , which represents the best result for solution-processed fullerene derivatives. An in-depth microstructural study indicates that the PTEG-1 molecules readily form layered structures parallel to the substrate after solution processing. The fullerene cage plane is alternated by the triethylene glycol side chain plane; the n-DMBI dopants are mainly incorporated in the side chain plane without disturbing the π-π packing of PTEG-1. This new microstructure, which is rarely observed for codeposited thin films from solution, formed by PTEG-1 and n-DMBI molecules explains the increased miscibility of the host/dopant system at a nanoscale level and the high electrical conductivity. Finally, a power factor of 16.7 µW m-1 K-2 is achieved at 40% dopant concentration. This work introduces a new strategy for improving the conductivity of solution-processed n-type organic thermoelectrics.

12.
Chem Sci ; 8(3): 2365-2372, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451341

RESUMO

This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = |J(+)/J(-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

13.
ACS Appl Mater Interfaces ; 8(34): 22623-8, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27526262

RESUMO

One of the most commonly used cathode interlayers for increasing the efficiency of electron injection/extraction in organic electronic devices is an ultrathin layer of LiF. Our capacitance measurements and electrical conductivity analysis show that thin films of fullerene derivatives and their mixtures with polymers are unintentionally doped upon deposition of LiF. The level of doping depends on the chemical structure of the fullerene derivatives. The doping effect on polymer/fullerene mixtures is significant only for blends in which the fullerene content is greater than the polymer content by weight. Our finding has profound implications for the development and characterization of organic photovoltaic devices, including a negative impact of doping on the stability of the device and erroneous estimations of properties such as charge carrier mobility and the dielectric constant.

14.
J Phys Chem A ; 120(27): 4664-71, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26478954

RESUMO

A multidisciplinary approach involving organic synthesis and theoretical chemistry was applied to investigate a promising strategy to improve charge separation in organic photovoltaics: installing permanent dipoles in fullerene derivatives. First, a PCBM analogue with a permanent dipole in the side chain (PCBDN) and its reference analogue without a permanent dipole (PCBBz) were successfully synthesized and characterized. Second, a multiscale modeling approach was applied to investigate if a PCBDN environment around a central donor-acceptor complex indeed facilitates charge separation. Alignment of the embedding dipoles in response to charges present on the central donor-acceptor complex enhances charge separation. The good correspondence between experimentally and theoretically determined electronic and optical properties of PCBDN, PCBBz, and PCBM indicates that the theoretical analysis of the embedding effects of these molecules gives a reliable expectation for their influence on the charge separation process at a microscopic scale in a real device. This work suggests the following strategies to improve charge separation in organic photovoltaics: installing permanent dipoles in PCBM analogues and tuning the concentration of these molecules in an organic donor/acceptor blend.

15.
Nano Lett ; 15(8): 5569-73, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26182342

RESUMO

It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the molecule is reduced resulting into a 10-fold increase in the off-resonant differential conductance. Theoretical calculations link the change in differential conductance to a reduction-induced change in conjugation, thereby lifting destructive interference of transport pathways.


Assuntos
Antraquinonas/química , Transistores Eletrônicos , Condutividade Elétrica , Eletrodos , Elétrons , Compostos de Sulfidrila/química
16.
Chem Commun (Camb) ; 51(38): 8126-9, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25871457

RESUMO

A series of new, easily synthesized C60-fullerene derivatives is introduced that allow for optimization of the interactions between rr-P3HT and the fullerene by systematic variation of the size of the ester group. Two compounds gave overall cell efficiencies of 4.8%, clearly outperforming [60]PCBM which gives 4.3% under identical conditions.

17.
Nat Nanotechnol ; 9(10): 830-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25173832

RESUMO

Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital levels with respect to the Fermi energies of the electrodes and the electronic coupling with those electrodes. Particularly appealing exceptions include molecules in which two moieties are twisted with respect to each other and molecules in which quantum interference effects are possible. Here, we report the experimental observation of pronounced negative differential conductance in the current-voltage characteristics of a single molecule in break junctions. The molecule of interest consists of two conjugated arms, connected by a non-conjugated segment, resulting in two coupled sites. A voltage applied across the molecule pulls the energy of the sites apart, suppressing resonant transport through the molecule and causing the current to decrease. A generic theoretical model based on a two-site molecular orbital structure captures the experimental findings well, as confirmed by density functional theory with non-equilibrium Green's functions calculations that include the effect of the bias. Our results point towards a conductance mechanism mediated by the intrinsic molecular orbitals alignment of the molecule.

18.
Chem Commun (Camb) ; 50(73): 10645-7, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25075465

RESUMO

The invention of new organic materials with high dielectric constants is of extreme importance for the development of organic-based devices such as organic solar cells. We report on a synthetic way to increase the dielectric constant of fullerene derivatives. It is demonstrated that introducing triethylene glycol monoethyl ether (teg) side chains into fulleropyrrolidines increases the dielectric constant by ~46 percent without devaluation of optical properties, electron mobility and the energy level of the compound.

19.
Phys Chem Chem Phys ; 16(2): 653-62, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24270575

RESUMO

We discuss the relationship between the π-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated molecules. For this, we compare experiments on two series of dithiolated wires. The first set we synthesized consists of three dithiolated oligo(phenylene ethynylene) (OPE) benchmark compounds with increasing length. The second series synthesized comprises three molecules with different π-conjugation patterns, but identical lengths, i.e. an anthracene (linear conjugation), an anthraquinone (cross-conjugation), and a dihydroanthracene (broken conjugation) derivative. To benchmark reliable trends, conductance experiments on these series have been performed by various techniques. Here, we compare data obtained by conductive-probe atomic force microscopy (CP-AFM) for self-assembled monolayers (SAMs) with single-molecule break junction and multi-molecule EGaIn data from other groups. For the benchmark OPE-series, we consistently find an exponential decay of the conductance with molecular length characterized by ß = 0.37 ± 0.03 Å(-1) (CP-AFM). Remarkably, for the second series, we do not only find that the linearly conjugated anthracene-containing wire is the most conductive, but also that the cross-conjugated anthraquinone-containing wire is less conductive than the broken-conjugated derivative. We attribute the low conductance values for the cross-conjugated species to quantum interference effects. Moreover, by theoretical modeling, we show that destructive quantum interference is a robust feature for cross-conjugated structures and that the energy at which complete destructive interference occurs can be tuned by the choice of side group. The latter provides an outlook for future devices in this fascinating field connecting chemistry and physics.

20.
Nat Mater ; 12(12): 1087-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24257133
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA