Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 960, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181670

RESUMO

Analysis of manganese mineral occurrences and valence states demonstrate oxidation of Earth's crust through time. Changes in crustal redox state are critical to Earth's evolution, but few methods exist for evaluating spatially averaged crustal redox state through time. Manganese (Mn) is a redox-sensitive metal whose variable oxidation states and abundance in crustal minerals make it a useful tracer of crustal oxidation. We find that the average oxidation state of crustal Mn occurrences has risen in the last 1 billion years in response to atmospheric oxygenation following a 66 ± 1 million-year time lag. We interpret this lag as the average time necessary to equilibrate the shallow crust to atmospheric oxygen fugacity. This study employs large mineralogical databases to evaluate geochemical conditions through Earth's history, and we propose that this and other mineral data sets form an important class of proxies that constrain the evolving redox state of various Earth reservoirs.

2.
Geosci Data J ; 8(1): 74-89, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34158935

RESUMO

Minerals contain important clues to understanding the complex geologic history of Earth and other planetary bodies. Therefore, geologists have been collecting mineral samples and compiling data about these samples for centuries. These data have been used to better understand the movement of continental plates, the oxidation of Earth's atmosphere and the water regime of ancient martian landscapes. Datasets found at 'RRUFF.info/Evolution' and 'mindat.org' have documented a wealth of mineral occurrences around the world. One of the main goals in geoinformatics has been to facilitate discovery by creating and merging datasets from various scientific fields and using statistical methods and visualization tools to inspire and test hypotheses applicable to modelling Earth's past environments. To help achieve this goal, we have compiled physical, chemical and geological properties of minerals and linked them to the above-mentioned mineral occurrence datasets. As a part of the Deep Time Data Infrastructure, funded by the W.M. Keck Foundation, with significant support from the Deep Carbon Observatory (DCO) and the A.P. Sloan Foundation, GEMI ('Global Earth Mineral Inventory') was developed from the need of researchers to have all of the required mineral data visible in a single portal, connected by a robust, yet easy to understand schema. Our data legacy integrates these resources into a digestible format for exploration and analysis and has allowed researchers to gain valuable insights from mineralogical data. GEMI can be considered a network, with every node representing some feature of the datasets, for example, a node can represent geological parameters like colour, hardness or lustre. Exploring subnetworks gives the researcher a specific view of the data required for the task at hand. GEMI is accessible through the DCO Data Portal (https://dx.deepcarbon.net/11121/6200-6954-6634-8243-CC). We describe our efforts in compiling GEMI, the Data Policies for usage and sharing, and the evaluation metrics for this data legacy.

3.
Chem Erde ; 80(2)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33299255

RESUMO

NASA's search for habitable environments has focused on alteration mineralogy of the Martian crust and the formation of hydrous minerals, because they reveal information about the fluid and environmental conditions from which they precipitated. Extensive work has focused on the formation of alteration minerals at low temperatures, with limited work investigating metamorphic or high-temperature alteration. We have investigated such a site as an analog for Mars: a mafic dike on the Colorado Plateau that was hydrothermally altered from contact with groundwater as it was emplaced in the porous and permeable Jurassic Entrada sandstone. Our results show evidence for fluid mobility removing Si and K but adding S, Fe, Ca, and possibly Mg to the system as alteration progresses. Mineralogically, all samples contain calcite, hematite, and kaolinite; with most samples containing minor anatase, barite, halite, and dolomite. The number of alteration minerals increase with alteration. The hydrothermal system that formed during interaction of the magma (heat source) and groundwater would have been a habitable environment once the system cooled below ~120° C. The mineral assemblage is similar to alteration minerals seen within the Martian crust from orbit, including those at Gusev and Jezero Craters. Therefore, based on our findings, and extrapolating them to the Martian crust, these sites may represent habitable environments which would call for further exploration and sample return of such hydrothermally altered igneous materials.

4.
Langmuir ; 28(50): 17322-30, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23163294

RESUMO

The adsorption configuration of organic molecules on mineral surfaces is of great interest because it can provide fundamental information for both engineered and natural systems. Here we have conducted surface-enhanced Raman spectroscopy (SERS) measurements to probe the attachment configurations of DOPA on nanorutile particles under different pH and surface coverage conditions. The Raman signal enhancement arises when a charge transfer (CT) complex forms between the nanoparticles and adsorbed DOPA. This Raman signal is exclusively from the surface-bound complexes with great sensitivity to the binding and orientation of the DOPA attached to the TiO(2) surface. Our SERS spectra show peaks that progressively change with pH and surface coverage, indicating changing surface speciation. At low pH and surface coverage, DOPA adsorbs on the surface lying down, with probably three points of attachment, whereas at higher pH and surface coverage DOPA stands up on the surface as a species involving two attachment points via the two phenolic oxygens. Our results demonstrate experimentally the varying proportions of the two surface species as a function of environmental conditions consistent with published surface complexation modeling. This observation opens up the possibility to manipulate organic molecule attachment in engineered systems such as biodetection devices. Furthermore, it provides a perspective on the possible role of mineral surfaces in the chemical evolution of biomolecules on the early Earth. Adsorbed biomolecules on mineral surface in certain configurations may have had an advantage for subsequent condensation reactions, facilitating the formation of peptides.


Assuntos
Levodopa/química , Nanopartículas/química , Titânio/química , Concentração de Íons de Hidrogênio , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...