Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1211197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496853

RESUMO

Base editors are recent multiplex gene editing tools derived from the Cas9 nuclease of Streptomyces pyogenes. They can target and modify a single nucleotide in the genome without inducing double-strand breaks (DSB) of the DNA helix. As such, they hold great potential for the engineering of microbes that lack effective DSB repair pathways such as homologous recombination (HR) or non-homologous end-joining (NHEJ). However, few applications of base editors have been reported in prokaryotes to date, and their advantages and drawbacks have not been systematically reported. Here, we used the base editors Target-AID and Target-AID-NG to introduce nonsense mutations into four different coding sequences of the industrially relevant Gram-positive bacterium Clostridium autoethanogenum. While up to two loci could be edited simultaneously using a variety of multiplexing strategies, most colonies exhibited mixed genotypes and most available protospacers led to undesired mutations within the targeted editing window. Additionally, fifteen off-target mutations were detected by sequencing the genome of the resulting strain, among them seven single-nucleotide polymorphisms (SNP) in or near loci bearing some similarity with the targeted protospacers, one 15 nt duplication, and one 12 kb deletion which removed uracil DNA glycosylase (UDG), a key DNA repair enzyme thought to be an obstacle to base editing mutagenesis. A strategy to process prokaryotic single-guide RNA arrays by exploiting tRNA maturation mechanisms is also illustrated.

2.
Virulence ; 14(1): 2205251, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37157163

RESUMO

Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.


Assuntos
Toxinas Botulínicas , Botulismo , Clostridium botulinum , Lactente , Humanos , Clostridium botulinum/metabolismo , Botulismo/microbiologia , Botulismo/terapia , Virulência , Neurotoxinas/metabolismo , Toxinas Botulínicas/metabolismo
3.
ACS Synth Biol ; 11(5): 1790-1800, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35543716

RESUMO

The platform chemical ethylene glycol (EG) is used to manufacture various commodity chemicals of industrial importance, but largely remains synthesized from fossil fuels. Although several novel metabolic pathways have been reported for its bioproduction in model organisms, none has been reported for gas-fermenting, non-model acetogenic chassis organisms. Here, we describe a novel, synthetic biochemical pathway to convert acetate into EG in the industrially important gas-fermenting acetogen,Clostridium autoethanogenum. We not only developed a computational workflow to design and analyze hundreds of novel biochemical pathways for EG production but also demonstrated a successful pathway construction in the chosen host. The EG production was achieved using a two-plasmid system to bypass unfeasible expression levels and potential toxic enzymatic interactions. Although only a yield of 0.029 g EG/g fructose was achieved and therefore requiring further strain engineering efforts to optimize the designed strain, this work demonstrates an important proof-of-concept approach to computationally design and experimentally implement fully synthetic metabolic pathways in a metabolically highly specific, non-model host organism.


Assuntos
Clostridium , Etilenoglicol , Clostridium/genética , Clostridium/metabolismo , Etilenoglicol/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Plasmídeos
4.
Appl Environ Microbiol ; 88(7): e0247921, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285680

RESUMO

The majority of the genes present in bacterial genomes remain poorly characterized, with up to one-third of those that are protein encoding having no definitive function. Transposon insertion sequencing represents a high-throughput technique that can help rectify this deficiency. The technology, however, can only be realistically applied to those species in which high rates of DNA transfer can be achieved. Here, we have developed a number of approaches that overcome this barrier in the autotrophic species Clostridium autoethanogenum by using a mariner-based transposon system. The inherent instability of such systems in the Escherichia coli conjugation donor due to transposition events was counteracted through the incorporation of a conditionally lethal codA marker on the plasmid backbone. Relatively low frequencies of transformation of the plasmid into C. autoethanogenum were circumvented through the use of a plasmid that is conditional for replication coupled with the routine implementation of an Illumina library preparation protocol that eliminates plasmid-based reads. A transposon library was then used to determine the essential genes needed for growth using carbon monoxide as the sole carbon and energy source. IMPORTANCE Although microbial genome sequences are relatively easily determined, assigning gene function remains a bottleneck. Consequently, relatively few genes are well characterized, leaving the function of many as either hypothetical or entirely unknown. High-throughput transposon sequencing can help remedy this deficiency, but is generally only applicable to microbes with efficient DNA transfer procedures. These exclude many microorganisms of importance to humankind either as agents of disease or as industrial process organisms. Here, we developed approaches to facilitate transposon insertion sequencing in the acetogen Clostridium autoethanogenum, a chassis being exploited to convert single-carbon waste gases CO and CO2 into chemicals and fuels at an industrial scale. This allowed the determination of gene essentiality under heterotrophic and autotrophic growth, providing insights into the utilization of CO as a sole carbon and energy source. The strategies implemented are translatable and will allow others to apply transposon insertion sequencing to other microbes where DNA transfer has until now represented a barrier to progress.


Assuntos
Monóxido de Carbono , Clostridium , Processos Autotróficos , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Elementos de DNA Transponíveis , Genoma Bacteriano , Mutagênese Insercional
5.
Genes (Basel) ; 11(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340238

RESUMO

Phenotypic complementation of gene knockouts is an essential step in establishing function. Here, we describe a simple strategy for 'gold standard' complementation in which the mutant allele is replaced in situ with a wild type (WT) allele in a procedure that exploits CRISPR/Cas9. The method relies on the prior incorporation of a unique 24 nucleotide (nt) 'bookmark' sequence into the mutant allele to act as a guide RNA target during its Cas9-mediated replacement with the WT allele. The bookmark comprises a 23 nt Cas9 target sequence plus an additional nt to ensure the deletion is in-frame. Here, bookmarks are tailored to Streptococcus pyogenes CRISPR/Cas9 but could be designed for any CRISPR/Cas system. For proof of concept, nine bookmarks were tested in Clostridium autoethanogenum. Complementation efficiencies reached 91%. As complemented strains are indistinguishable from their progenitors, concerns over contamination may be satisfied by the incorporation of 'watermark' sequences into the complementing genes.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Sistemas CRISPR-Cas , Clostridium/genética , Edição de Genes , Técnicas de Inativação de Genes , Teste de Complementação Genética , Engenharia Genética/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clostridium/metabolismo , Genoma Bacteriano , Padrões de Referência
6.
Anaerobe ; 59: 184-191, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31269456

RESUMO

Clostridium encompasses species which are relevant to human and animal disease as well as species which have industrial potential, for instance, as producers of chemicals and fuels or as tumour delivery vehicles. Genetic manipulation of these target organisms is critical for advances in these fields. DNA transfer efficiencies, however, vary between species. Low efficiencies can impede the progress of research efforts. A novel conjugal donor strain of Escherichia coli has been created which exhibits a greater than 10-fold increases in conjugation efficiency compared to the traditionally used CA434 strain in the three species tested; C. autoethanogenum DSM 10061, C. sporogenes NCIMB 10696 and C. difficile R20291. The novel strain, designated 'sExpress', does not methylate DNA at Dcm sites (CCWGG) which allows circumvention of cytosine-specific Type IV restriction systems. A robust protocol for conjugation is presented which routinely produces in the order of 105 transconjugants per millilitre of donor cells for C. autoethanogenum, 106 for C. sporogenes and 102 for C. difficile R20291. The novel strain created is predicted to be a superior conjugal donor in a wide range of species which possess Type IV restriction systems.


Assuntos
Clostridium/genética , Conjugação Genética , Escherichia coli/genética , Técnicas de Transferência de Genes , Genética Microbiana/métodos
7.
Sci Rep ; 9(1): 8123, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148548

RESUMO

Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C. difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE. The genomes of the strains generated (630Δerm* and 630Δerm*ΔpyrE, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a 'nickase'. The mutation allowed cas9 to be cloned downstream of the strong Pthl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.


Assuntos
Sistemas CRISPR-Cas , Clostridioides difficile/genética , Eritromicina/farmacologia , Edição de Genes , Genoma Bacteriano , Clostridioides difficile/efeitos dos fármacos , Códon de Iniciação , Meios de Cultura , Escherichia coli , Mutação da Fase de Leitura , Deleção de Genes , Vetores Genéticos , Metiltransferases/genética , Mutagênese , Mutação , Fenótipo , Plasmídeos/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
8.
Appl Microbiol Biotechnol ; 103(11): 4633-4648, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972463

RESUMO

Clostridium autoethanogenum and Clostridium ljungdahlii are physiologically and genetically very similar strict anaerobic acetogens capable of growth on carbon monoxide as sole carbon source. While exact nutritional requirements have not been reported, we observed that for growth, the addition of vitamins to media already containing yeast extract was required, an indication that these are fastidious microorganisms. Elimination of complex components and individual vitamins from the medium revealed that the only organic compounds required for growth were pantothenate, biotin and thiamine. Analysis of the genome sequences revealed that three genes were missing from pantothenate and thiamine biosynthetic pathways, and five genes were absent from the pathway for biotin biosynthesis. Prototrophy in C. autoethanogenum and C. ljungdahlii for pantothenate was obtained by the introduction of plasmids carrying the heterologous gene clusters panBCD from Clostridium acetobutylicum, and for thiamine by the introduction of the thiC-purF operon from Clostridium ragsdalei. Integration of panBCD into the chromosome through allele-coupled exchange also conveyed prototrophy. C. autoethanogenum was converted to biotin prototrophy with gene sets bioBDF and bioHCA from Desulfotomaculum nigrificans strain CO-1-SRB, on plasmid and integrated in the chromosome. The genes could be used as auxotrophic selection markers in recombinant DNA technology. Additionally, transformation with a subset of the genes for pantothenate biosynthesis extended selection options with the pantothenate precursors pantolactone and/or beta-alanine. Similarly, growth was obtained with the biotin precursor pimelate combined with genes bioYDA from C. acetobutylicum. The work raises questions whether alternative steps exist in biotin and thiamine biosynthesis pathways in these acetogens.


Assuntos
Clostridium/crescimento & desenvolvimento , Clostridium/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Vitaminas/biossíntese , Clostridium/genética , Meios de Cultura/química , Desulfotomaculum/genética , Expressão Gênica , Genes Bacterianos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Curr Opin Biotechnol ; 50: 174-181, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414057

RESUMO

The future sustainable production of chemicals and fuels from non-petrochemical sources, while at the same time reducing greenhouse gas (GHG) emissions, represent two of society's greatest challenges. Microbial chassis able to grow on waste carbon monoxide (CO) and carbon dioxide (CO2) can provide solutions to both. Ranging from the anaerobic acetogens, through the aerobic chemoautotrophs to the photoautotrophic cyanobacteria, they are able to convert C1 gases into a range of chemicals and fuels which may be enhanced and extended through appropriate metabolic engineering. The necessary improvements will be facilitated by the increasingly sophisticated gene tools that are beginning to emerge as part of the Synthetic Biology revolution. These tools, in combination with more accurate metabolic and genome scale models, will enable C1 chassis to deliver their full potential.


Assuntos
Biocombustíveis , Gases/metabolismo , Engenharia Metabólica/tendências , Dióxido de Carbono/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Genoma Bacteriano
10.
Anaerobe ; 41: 104-112, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27234263

RESUMO

Clostridium species are both heroes and villains. Some cause serious human and animal diseases, those present in the gut microbiota generally contribute to health and wellbeing, while others represent useful industrial chassis for the production of chemicals and fuels. To understand, counter or exploit, there is a fundamental requirement for effective systems that may be used for directed or random genome modifications. We have formulated a simple roadmap whereby the necessary gene systems maybe developed and deployed. At its heart is the use of 'pseudo-suicide' vectors and the creation of a pyrE mutant (a uracil auxotroph), initially aided by ClosTron technology, but ultimately made using a special form of allelic exchange termed ACE (Allele-Coupled Exchange). All mutants, regardless of the mutagen employed, are made in this host. This is because through the use of ACE vectors, mutants can be rapidly complemented concomitant with correction of the pyrE allele and restoration of uracil prototrophy. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Once available, the pyrE host may be used to stably insert all manner of application specific modules. Examples include, a sigma factor to allow deployment of a mariner transposon, hydrolases involved in biomass deconstruction and therapeutic genes in cancer delivery vehicles. To date, provided DNA transfer is obtained, we have not encountered any clostridial species where this technology cannot be applied. These include, Clostridium difficile, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium botulinum, Clostridium perfringens, Clostridium sporogenes, Clostridium pasteurianum, Clostridium ljungdahlii, Clostridium autoethanogenum and even Geobacillus thermoglucosidasius.


Assuntos
Infecções por Clostridium/microbiologia , Clostridium/genética , Engenharia Genética , Animais , Genes Bacterianos , Vetores Genéticos , Humanos , Mutagênese , Mutação , Replicon
11.
BMC Genomics ; 16: 1085, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26692227

RESUMO

BACKGROUND: Clostridium autoethanogenum is an acetogenic bacterium capable of producing high value commodity chemicals and biofuels from the C1 gases present in synthesis gas. This common industrial waste gas can act as the sole energy and carbon source for the bacterium that converts the low value gaseous components into cellular building blocks and industrially relevant products via the action of the reductive acetyl-CoA (Wood-Ljungdahl) pathway. Current research efforts are focused on the enhancement and extension of product formation in this organism via synthetic biology approaches. However, crucial to metabolic modelling and directed pathway engineering is a reliable and comprehensively annotated genome sequence. RESULTS: We performed next generation sequencing using Illumina MiSeq technology on the DSM10061 strain of Clostridium autoethanogenum and observed 243 single nucleotide discrepancies when compared to the published finished sequence (NCBI: GCA_000484505.1), with 59.1 % present in coding regions. These variations were confirmed by Sanger sequencing and subsequent analysis suggested that the discrepancies were sequencing errors in the published genome not true single nucleotide polymorphisms. This was corroborated by the observation that over 90 % occurred within homopolymer regions of greater than 4 nucleotides in length. It was also observed that many genes containing these sequencing errors were annotated in the published closed genome as encoding proteins containing frameshift mutations (18 instances) or were annotated despite the coding frame containing stop codons, which if genuine, would severely hinder the organism's ability to survive. Furthermore, we have completed a comprehensive manual curation to reduce errors in the annotation that occur through serial use of automated annotation pipelines in related species. As a result, different functions were assigned to gene products or previous functional annotations rejected because of missing evidence in various occasions. CONCLUSIONS: We present a revised manually curated full genome sequence for Clostridium autoethanogenum DSM10061, which provides reliable information for genome-scale models that rely heavily on the accuracy of annotation, and represents an important step towards the manipulation and metabolic modelling of this industrially relevant acetogen.


Assuntos
Clostridium/genética , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Curadoria de Dados/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...