Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chemosphere ; 313: 137393, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36442679

RESUMO

Water treatment and reuse is gaining acceptance as a strategy to fight against water contamination and scarcity, but it usually requires complex treatments to ensure safety. Consequently, the electrochemical advanced processes have emerged as an effective alternative for water remediation. The main objective here is to perform a systematic study that quantifies the efficiency of a laboratory-scale electrochemical system to inactivate bacteria, bacterial spores, protozoa, bacteriophages and viruses in synthetic water, as well as in urban wastewater once treated in a wetland for reuse in irrigation. A Ti|RuO2-based plate and Si|BDD thin-film were comparatively employed as the anode, which was combined with a stainless-steel cathode in an undivided cell operating at 12 V. Despite the low resulting current density (<15 mA/cm2), both anodes demonstrated the production of oxidants in wetland effluent water. The disinfection efficiency was high for the bacteriophage MS2 (T99 in less than 7.1 min) and bacteria (T99 in about 30 min as maximum), but limited for CBV5 and TuV, spores and amoebas (T99 in more than 300 min). MS2 presented a rapid exponential inactivation regardless of the anode and bacteria showed similar sigmoidal curves, whereas human viruses, spores and amoebas resulted in linear profiles. Due the different sensitivity of microorganisms, different models must be considered to predict their inactivation kinetics. On this basis, it can be concluded that evaluating the viral inactivation from inactivation profiles determined for bacteria or some bacteriophages may be misleading. Therefore, neither bacteria nor bacteriophages are suitable models for the disinfection of water containing enteric viruses. The electrochemical treatment added as a final disinfection step enhances the inactivation of microorganisms, which could contribute to safe water reuse for irrigation. Considering the calculated low energy consumption, decentralized water treatment units powered by photovoltaic modules might be a near reality.


Assuntos
Desinfecção , Purificação da Água , Humanos , Desinfecção/métodos , Bactérias , Oxirredução , Purificação da Água/métodos , Oxidantes
2.
Sci Rep ; 12(1): 16704, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202959

RESUMO

Wastewater-based epidemiology has shown to be an efficient tool to track the circulation of SARS-CoV-2 in communities assisted by wastewater treatment plants (WWTPs). The challenge comes when this approach is employed to help Health authorities in their decision-making. Here, we describe the roadmap for the design and deployment of SARSAIGUA, the Catalan Surveillance Network of SARS-CoV-2 in Sewage. The network monitors, weekly or biweekly, 56 WWTPs evenly distributed across the territory and serving 6 M inhabitants (80% of the Catalan population). Each week, samples from 45 WWTPs are collected, analyzed, results reported to Health authorities, and finally published within less than 72 h in an online dashboard ( https://sarsaigua.icra.cat ). After 20 months of monitoring (July 20-March 22), the standardized viral load (gene copies/day) in all the WWTPs monitored fairly matched the cumulative number of COVID-19 cases along the successive pandemic waves, showing a good fit with the diagnosed cases in the served municipalities (Spearman Rho = 0.69). Here we describe the roadmap of the design and deployment of SARSAIGUA while providing several open-access tools for the management and visualization of the surveillance data.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias , RNA Viral , Esgotos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
3.
Foods ; 10(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34441597

RESUMO

Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples.

4.
Viruses ; 12(3)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188099

RESUMO

Rotavirus A (RVA) is the most common virus associated with infantile gastroenteritisworldwide, being a public health threat, as it is excreted in large amounts in stool and can persist inthe environment for extended periods. In this study, we performed the detection of RVA and humanadenovirus (HAdV) by TaqMan qPCR and assessed the circulation of RVA genotypes in threewastewater treatment plants (WWTPs) between 2015 and 2016 in Catalonia, Spain. RVA wasdetected in 90% and HAdV in 100% of the WWTP samples, with viral loads ranging between 3.96 ×104 and 3.30 × 108 RT-PCR Units/L and 9.51 × 104 and 1.16 × 106 genomic copies/L, respectively. RVAVP7 and VP4 gene analysis revealed the circulation of G2, G3, G9, G12, P[4], P[8], P[9] and P[10].Nucleotide sequencing (VP6 fragment) showed the circulation of I1 and I2 genotypes, commonlyassociated with human, bovine and porcine strains. It is important to mention that the RVA strainsisolated from the WWTPs were different from those recovered from piglets and calves living in thesame area of single sampling in 2016. These data highlight the importance of monitoring watermatrices for RVA epidemiology and may be a useful tool to evaluate and predict possibleemergence/reemergence of uncommon strains in a region.


Assuntos
Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/isolamento & purificação , Esgotos/virologia , Animais , Proteínas do Capsídeo/genética , Bovinos , Fezes/virologia , Variação Genética , Genótipo , Humanos , Filogenia , Prevalência , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus/genética , Análise de Sequência , Espanha , Suínos , Carga Viral
5.
Sci Total Environ ; 710: 136298, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31923670

RESUMO

The wide diversity of irrigation water sources (i.e., drinking water, groundwater, reservoir water, river water) includes reclaimed water as a requested measure for increasing water availability, but it is also a challenge as pathogen exposure may increase. This study evaluates the level of microbial contamination in different irrigation waters to improve the knowledge and analyses management measures for safety irrigation. Over a one-year period, the occurrence of a set of viruses, bacteria and protozoa, was quantified and the performance of a wetland system, producing reclaimed water intended for irrigation, was characterized. Human fecal pollution (HAdV) was found in most of the irrigation water types analysed. Hepatitis E virus (HEV), an emerging zoonotic pathogen, was present in groundwater where porcine contamination was identified (PAdV). The skin-carcinoma associated Merkel cell polyomavirus (MCPyV), was found occasionally in river water. Noroviruses were detected, as expected, in winter, in river water and reclaimed water. Groundwater, river water and reservoir water also harboured potential bacterial pathogens, like Helicobacter pylori, Legionella spp. and Aeromonas spp. that could be internalized and viable inside amoebas like Acanthamoeba castellanii, which was also detected. Neither Giardia cysts, nor any Cryptosporidium oocysts were detected. The wetland system removed 3 Log10 of viruses and 5 Log10 of bacteria, which resembled the river water quality. Irrigation waters were prone to variable contamination levels and according to the European guidance documents, the E. coli (EC) levels were not always acceptable. Sporadic detection of viral pathogens as NoV GII and HAdV was identified in water samples presenting lower EC than the established limit (100MNP/100 mL). When dealing with reclaimed water as a source of irrigation the analysis of some viral parameters, like HAdV during the peak irrigation period (summer and spring) or NoV during the coldest months, could complement existing water management tools based on bacterial indicators.


Assuntos
Água , Irrigação Agrícola , Animais , Cryptosporidium , Escherichia coli , Humanos , Suínos , Microbiologia da Água
7.
J Microbiol Methods ; 134: 46-53, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28093213

RESUMO

In this study, the use of skimmed milk flocculation (SMF) to simultaneously concentrate viruses, bacteria and protozoa was evaluated. We selected strains of faecal indicator bacteria and pathogens, such as Escherichia coli and Helicobacter pylori. The viruses selected were adenovirus (HAdV 35), rotavirus (RoV SA-11), the bacteriophage MS2 and bovine viral diarrhoea virus (BVDV). The protozoa tested were Acanthamoeba, Giardia and Cryptosporidium. The mean recoveries with q(RT)PCR were 66% (HAdV 35), 24% (MS2), 28% (RoV SA-11), 15% (BVDV), 60% (E. coli), 30% (H. pylori) and 21% (Acanthamoeba castellanii). When testing the infectivity, the mean recoveries were 59% (HAdV 35), 12% (MS2), 26% (RoV SA-11) and 0.7% (BVDV). The protozoa Giardia lamblia and Cryptosporidium parvum were studied by immunofluorescence with recoveries of 18% and 13%, respectively. Although q(RT)PCR consistently showed higher quantification values (as expected), q(RT)PCR and the infectivity assays showed similar recoveries for HAdV 35 and RoV SA-11. Additionally, we investigated modelling the variability and uncertainty of the recovery with this method to extrapolate the quantification obtained by q(RT)PCR and estimate the real concentration. The 95% prediction intervals of the real concentration of the microorganisms inoculated were calculated using a general non-parametric bootstrap procedure adapted in our context to estimate the technical error of the measurements. SMF shows recoveries with a low variability that permits the use of a mathematical approximation to predict the concentration of the pathogen and indicator with acceptable low intervals. The values of uncertainty may be used for a quantitative microbial risk analysis or diagnostic purposes.


Assuntos
Bactérias/isolamento & purificação , Técnicas Microbiológicas , Leite , Vírus/isolamento & purificação , Microbiologia da Água , Água/parasitologia , Animais , Bovinos , Cryptosporidium/isolamento & purificação , Cryptosporidium parvum/isolamento & purificação , Escherichia coli/isolamento & purificação , Floculação , Giardia/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Incerteza
8.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811094

RESUMO

The genome sequence of a simian adenovirus from a cynomolgus macaque, denoted CynAdV-1, is presented here. Phylogenetic analysis supports CynAdV-1 in an independent clade, comprising a new simian adenovirus (SAdV) species. These genome data are critical for understanding the evolution and relationships of primate adenoviruses, including zoonosis and emergent human pathogens.

9.
Int J Hyg Environ Health ; 219(4-5): 405-11, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27079972

RESUMO

Hepatitis E Virus (HEV) is a major cause of waterborne outbreaks in areas with poor sanitation. As safe water supplies are the keystone for preventing HEV outbreaks, data on the efficacy of disinfection treatments are urgently needed. Here, we evaluated the ability of UV radiation and flocculation-chlorination sachets (FCSs) to reduce HEV in water matrices. The HEV-p6-kernow strain was replicated in the HepG2/C3A cell line, and we quantified genome number using qRT-PCR and infectivity using an immunofluorescence assay (IFA). UV irradiation tests using low-pressure radiation showed inactivation kinetics for HEV of 99.99% with a UV fluence of 232J/m(2) (IC 95%, 195,02-269,18). Moreover, the FCSs preparations significantly reduced viral concentrations in both water matrices, although the inactivation results were under the baseline of reduction (4.5 LRV) proposed by WHO guidelines.


Assuntos
Cloro/toxicidade , Desinfetantes/toxicidade , Desinfecção/instrumentação , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/efeitos da radiação , Purificação da Água/instrumentação , Linhagem Celular Tumoral , Desinfecção/métodos , Água Potável , Floculação , Halogenação , Humanos , Raios Ultravioleta , Poluentes da Água/efeitos da radiação , Purificação da Água/métodos
10.
Water Res ; 59: 119-29, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24793110

RESUMO

Integrated river basin management planning to mitigate the impacts of economic, demographic and climate change is an important issue for the future protection of water resources. Identifying sources of microbial contamination via the emerging science of Microbial Source Tracking (MST) plays a key role in risk assessment and the design of remediation strategies. Following an 18-month surveillance program within the EU-FP7-funded VIROCLIME project, specific MST tools were used to assess human markers such as adenoviruses (HAdV) and JC polyomaviruses (JCPyV) and porcine and bovine markers such as porcine adenoviruses (PAdV) and bovine polyomaviruses (BPyV) via quantification with real-time PCR to analyze surface water collected from five sites within different climatic zones: the Negro River (Brazil), Glafkos River (Greece), Tisza River (Hungary), Llobregat River (Spain) and Umeälven River (Sweden). The utility of the viral MST tools and the prevalence and abundance of specific human and animal viruses in the five river catchments and adjacent seawater, which is impacted by riverine contributions from the upstream catchments, were examined. In areas where no sanitation systems have been implemented, sewage can directly enter surface waters, and river water exhibited high viral loads; HAdV and JCPyV could be detected at mean concentrations of 10(5) and 10(4) Genome Copies/Liter (GC/L), respectively. In general, river water samples upstream of urban discharges presented lower human viral loads than downstream sampling sites, and those differences appeared to increase with urban populations but decrease in response to high river flow, as the elevated river water volume dilutes microbial loads. During dry seasons, river water flow decreases dramatically, and secondary effluents can represent the bulk of the riverine discharge. We also observed that ice cover that formed over the river during the winter in the studied areas in North Europe could preserve viral stability due to the low temperatures and/or the lack of solar inactivation. Porcine and bovine markers were detected where intensive livestock and agricultural activities were present; mean concentration values of 10(3) GC/L indicated that farms were sometimes unexpected and important sources of fecal contamination in water. During spring and summer, when livestock is outdoors and river flows are low, animal pollution increases due to diffuse contamination and direct voiding of feces onto the catchment surface. The field studies described here demonstrate the dynamics of fecal contamination in all catchments studied, and the data obtained is currently being used to develop dissemination models of fecal contamination in water with respect to future climate change scenarios. The results concerning human and animal targets presented in this study demonstrate the specificity and applicability of the viral quantitative parameters developed to widely divergent geographical areas and their high interest as new indicators of human and animal fecal contamination in water and as MST tools.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/virologia , Água do Mar/virologia , Virologia/métodos , Animais , Brasil , Europa (Continente) , Humanos , Poluentes da Água
11.
Food Environ Virol ; 6(1): 31-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24293153

RESUMO

Shellfish complying with European Regulations based on quantification of fecal bacterial indicators (FIB) are introduced into markets; however, information on viruses, more stable than FIB, is not available in the literature. To assess the presence of noroviruses (NoVs) GI and GII and human adenoviruses (HAdV) in domestic and imported mussels and clams (n = 151) their presence was analyzed during winter seasons (2004-2008) in north-west Spanish markets through a routine surveillance system. All samples tested negative for NoV GI and 13 % were positive for NoV GII. The role of HAdV as viral indicator was evaluated in 20 negative and 10 positive NoV GII samples showing an estimated sensitivity and specificity of HAdV to predict the presence of NoV GII of 100 and 74 % (cut-off 0.5). The levels of HAdV and NoVs and the efficiency of decontamination in shellfish depuration plants (SDP) were evaluated analyzing pre- and post-depurated mussels collected in May-June 2010 from three different SDP. There were no statistically significant differences in the prevalence and quantification of HAdV between pre- and post-depurated shellfish and between seawater entering and leaving the depuration systems. Moreover, infectious HAdV were detected in depurated mussels. These results confirm previous studies showing that current controls and depuration treatments limiting the number of FIB do not guarantee the absence of viruses in shellfish.


Assuntos
Adenoviridae/isolamento & purificação , Bivalves/virologia , Contaminação de Alimentos/análise , Norovirus/isolamento & purificação , Frutos do Mar/virologia , Adenoviridae/classificação , Adenoviridae/genética , Animais , Infecções por Caliciviridae/virologia , Contaminação de Alimentos/economia , Humanos , Norovirus/classificação , Norovirus/genética , Estações do Ano , Frutos do Mar/economia , Espanha
12.
Biomed Res Int ; 2013: 192089, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762826

RESUMO

Many different viruses are excreted by humans and animals and are frequently detected in fecal contaminated waters causing public health concerns. Classical bacterial indicator such as E. coli and enterococci could fail to predict the risk for waterborne pathogens such as viruses. Moreover, the presence and levels of bacterial indicators do not always correlate with the presence and concentration of viruses, especially when these indicators are present in low concentrations. Our research group has proposed new viral indicators and methodologies for determining the presence of fecal pollution in environmental samples as well as for tracing the origin of this fecal contamination (microbial source tracking). In this paper, we examine to what extent have these indicators been applied by the scientific community. Recently, quantitative assays for quantification of poultry and ovine viruses have also been described. Overall, quantification by qPCR of human adenoviruses and human polyomavirus JC, porcine adenoviruses, bovine polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses is suggested as a toolbox for the identification of human, porcine, bovine, poultry, and ovine fecal pollution in environmental samples.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Fezes/virologia , Vírus/isolamento & purificação , Poluição da Água/análise , Animais , Humanos , Reação em Cadeia da Polimerase , Microbiologia da Água , Purificação da Água
13.
Sci Total Environ ; 458-460: 355-60, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23672793

RESUMO

Farmed animals such as sheep, cattle, swine and poultry play an important role in microbial contamination of water, crops and food, and introduce large quantities of pathogens into the environment. The ability to determine the origin of faecal pollution in water resources is essential when establishing a robust and efficient water management system. Animal-specific viruses have previously been suggested as microbial source tracking tools, but specific ovine viral markers have not been reported before now. Previous studies have shown that polyomaviruses are host-specific, highly prevalent and are commonly excreted in urine. Furthermore, they have been reported to infect several vertebrate species but not sheep. That situation encouraged the study of a new putative ovine polyomavirus (OPyV) and its use to determine whether faecal pollution originates from ovine faecal/urine contamination. Putative OPyV DNA was amplified from ovine urine and faecal samples using a broad-spectrum nested PCR (nPCR). Specific nested PCR and quantitative PCR assays were developed and applied to faecal and environmental samples, including sheep slurries, slaughterhouse wastewater effluents, urban sewage and river water samples. Successful amplification by PCR was achieved in sheep urine samples, sheep slaughterhouse wastewater and downstream sewage effluents. The assay was specific and was negative in samples of human, bovine, goat, swine and chicken origin. Ovine faecal pollution was detected in river water samples by applying the designed methods. These results provide a quantitative tool for the analysis of OPyV as a suitable viral indicator of sheep faecal contamination that may be present in the environment.


Assuntos
Poluição Ambiental/análise , Fezes/virologia , Reação em Cadeia da Polimerase/métodos , Polyomavirus/genética , Ovinos/virologia , Animais , Sequência de Bases , Primers do DNA/genética , Marcadores Genéticos/genética , Grécia , Hungria , Dados de Sequência Molecular , Polyomavirus/isolamento & purificação , Rios/virologia , Sensibilidade e Especificidade , Análise de Sequência de DNA , Espanha , Urina/virologia
14.
Int J Food Microbiol ; 164(2-3): 128-34, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23673057

RESUMO

Determining the stability, or persistence in an infectious state, of foodborne viral pathogens attached to surfaces of soft fruits and salad vegetables is essential to underpin risk assessment studies in food safety. Here, we evaluate the effect of temperature and sunlight on the stability of infectious human adenoviruses type 2 and MS2 bacteriophages on lettuce and strawberry surfaces as representative fresh products. Human adenoviruses have been selected because of their double role as viral pathogens and viral indicators of human fecal contamination. Stability assays were performed with artificially contaminated fresh samples kept in the dark or under sunlight exposure at 4 and 30°C over 24h. The results indicate that temperature is the major factor affecting HAdV stability in fresh produce surfaces, effecting decay between 3 and 4 log after 24h at 30°C. The inactivation times to achieve a reduction between 1 and 4-log are calculated for each experimental condition. This work provides useful information to be considered for improving food safety regarding the transmission of foodborne viruses through supply chains.


Assuntos
Adenovírus Humanos/fisiologia , Fezes/virologia , Fragaria/virologia , Levivirus/fisiologia , Luz Solar , Temperatura , Inativação de Vírus , Adenovírus Humanos/isolamento & purificação , Microbiologia de Alimentos , Frutas/virologia , Humanos , Lactuca/virologia , Levivirus/isolamento & purificação
15.
J Virol Methods ; 187(2): 215-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23164995

RESUMO

Viruses are among the most important pathogens present in water contaminated with feces or urine and represent a serious risk to human health. Four procedures for concentrating viruses from sewage have been compared in this work, three of which were developed in the present study. Viruses were quantified using PCR techniques. According to statistical analysis and the sensitivity to detect human adenoviruses (HAdV), JC polyomaviruses (JCPyV) and noroviruses genogroup II (NoV GGII): (i) a new procedure (elution and skimmed-milk flocculation procedure (ESMP)) based on the elution of the viruses with glycine-alkaline buffer followed by organic flocculation with skimmed-milk was found to be the most efficient method when compared to (ii) ultrafiltration and glycine-alkaline elution, (iii) a lyophilization-based method and (iv) ultracentrifugation and glycine-alkaline elution. Through the analysis of replicate sewage samples, ESMP showed reproducible results with a coefficient of variation (CV) of 16% for HAdV, 12% for JCPyV and 17% for NoV GGII. Using spiked samples, the viral recoveries were estimated at 30-95% for HAdV, 55-90% for JCPyV and 45-50% for NoV GGII. ESMP was validated in a field study using twelve 24-h composite sewage samples collected in an urban sewage treatment plant in the North of Spain that reported 100% positive samples with mean values of HAdV, JCPyV and NoV GGII similar to those observed in other studies. Although all of the methods compared in this work yield consistently high values of virus detection and recovery in urban sewage, some require expensive laboratory equipment. ESMP is an effective low-cost procedure which allows a large number of samples to be processed simultaneously and is easily standardizable for its performance in a routine laboratory working in water monitoring. Moreover, in the present study, a CV was applied and proposed as a parameter to evaluate and compare the methods for detecting viruses in sewage samples.


Assuntos
Adenovírus Humanos/isolamento & purificação , Vírus JC/isolamento & purificação , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Esgotos/virologia , Manejo de Espécimes/métodos , Virologia/métodos , Humanos , Reprodutibilidade dos Testes , Espanha
16.
Appl Environ Microbiol ; 78(20): 7496-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904047

RESUMO

Poultry farming may introduce pathogens into the environment and food chains. High concentrations of chicken/turkey parvoviruses were detected in chicken stools and slaughterhouse and downstream urban wastewaters by applying new PCR-based specific detection and quantification techniques. Our results confirm that chicken/turkey parvoviruses may be useful viral indicators of poultry fecal contamination.


Assuntos
Galinhas/virologia , Microbiologia Ambiental , Monitoramento Ambiental/métodos , Fezes/virologia , Parvovirus/isolamento & purificação , Perus/virologia , Carga Viral/métodos , Animais , DNA Viral/genética , Dados de Sequência Molecular , Parvovirus/genética , Análise de Sequência de DNA
17.
J Vis Exp ; (58)2011 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-22158410

RESUMO

Microbial contamination of the environment represents a significant health risk. Classical bacterial fecal indicators have shown to have significant limitations, viruses are more resistant to many inactivation processes and standard fecal indicators do not inform on the source of contamination. The development of cost-effective methods for the concentration of viruses from water and molecular assays facilitates the applicability of viruses as indicators of fecal contamination and as microbial source tracking (MST) tools. Adenoviruses and polyomaviruses are DNA viruses infecting specific vertebrate species including humans and are persistently excreted in feces and/or urine in all geographical areas studied. In previous studies, we suggested the quantification of human adenoviruses (HAdV) and JC polyomaviruses (JCPyV) by quantitative PCR (qPCR) as an index of human fecal contamination. Recently, we have developed qPCR assays for the specific quantification of porcine adenoviruses (PAdV) and bovine polyomaviruses (BPyV) as animal fecal markers of contamination with sensitivities of 1-10 genome copies per test tube. In this study, we present the procedure to be followed to identify the source of contamination in water samples using these tools. As example of representative results, analysis of viruses in ground water presenting high levels of nitrates is shown. Detection of viruses in low or moderately polluted waters requires the concentration of the viruses from at least several liters of water into a much smaller volume, a procedure that usually includes two concentration steps in series. This somewhat cumbersome procedure and the variability observed in viral recoveries significantly hamper the simultaneous processing of a large number of water samples. In order to eliminate the bottleneck caused by the two-step procedures we have applied a one-step protocol developed in previous studies and applicable to a diversity of water matrices. The procedure includes: acidification of ten-liter water samples, flocculation by skimmed milk, gravity sedimentation of the flocculated materials, collection of the precipitate and centrifugation, resuspension of the precipitate in 10 ml phosphate buffer. The viral concentrate is used for the extraction of viral nucleic acids and the specific adenoviruses and polyomaviruses of interest are quantified by qPCR. High number of samples may be simultaneously analyzed using this low-cost concentration method. The procedure has been applied to the analysis of bathing waters, seawater and river water and in this study, we present results analyzing groundwater samples. This high-throughput quantitative method is reliable, straightforward, and cost-effective.


Assuntos
Adenoviridae/isolamento & purificação , Polyomavirus/isolamento & purificação , Virologia/métodos , Microbiologia da Água , Animais , Bovinos , Análise Custo-Benefício , Água Subterrânea/virologia , Humanos , Rios/virologia , Água do Mar/virologia , Suínos , Virologia/economia
18.
J Water Health ; 9(3): 515-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21976198

RESUMO

Hepatitis E virus (HEV) is a common cause of water-borne acute hepatitis in areas with poor sanitation. In 2004 an outbreak of HEV infection affected around 2,000 people in Eastern Chad (Dar Sila). This paper describes the decrease in the incidence of acute jaundice syndrome (AJS) from 2004 until 2009 when a mean incidence of 0.48 cases/1,000 people/year was recorded in the region. Outbreaks of AJS were identified in some of the camps in 2007 and 2008. Moreover, water samples from drinking water sources were screened for human adenoviruses considered as viral indicators and for hepatitis A virus and HEV. Screening of faecal samples from donkeys for HEV gave negative results. Some of the samples were also analysed for faecal coliforms showing values before disinfection treatment between 3 and >50 colony forming units per 100 mL. All water samples tested were negative for HEV and HAV; however, the presence of low levels of human adenoviruses in 4 out of 16 samples analysed indicates possible human faecal contamination of groundwater. Consequently, breakdowns in the treatment of drinking water and/or increased excretion of hepatitis viruses, which could be related to the arrival of a new population, could spread future outbreaks through drinking water.


Assuntos
Icterícia/epidemiologia , Icterícia/virologia , Microbiologia da Água , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Animais , Chade/epidemiologia , Bases de Dados de Ácidos Nucleicos , Surtos de Doenças , Equidae , Fezes/virologia , Vírus da Hepatite A/isolamento & purificação , Vírus da Hepatite E/isolamento & purificação , Humanos , Incidência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esgotos/virologia
19.
mBio ; 2(5)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21972239

RESUMO

UNLABELLED: At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. IMPORTANCE: At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that the viral universe is far more vast and diverse than previously suspected.


Assuntos
Biodiversidade , Esgotos/virologia , Vírus/classificação , Vírus/isolamento & purificação , Genoma Viral , Dados de Sequência Molecular , Filogenia , Vírus/genética
20.
Virol J ; 8: 125, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21414228

RESUMO

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.


Assuntos
Adenovirus dos Símios/classificação , Adenovirus dos Símios/isolamento & purificação , Evolução Molecular , Macaca fascicularis/virologia , Filogenia , Adenovirus dos Símios/genética , Animais , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA