Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 21(1): 49-66, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874173

RESUMO

Intestinal ischemia-reperfusion (IR) injury is a severe clinical condition, and unraveling its pathophysiology is crucial to improve therapeutic strategies and reduce the high morbidity and mortality rates. Here, we studied the dynamic proteome and phosphoproteome in the human intestine during ischemia and reperfusion, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to gain quantitative information of thousands of proteins and phosphorylation sites, as well as mass spectrometry imaging (MSI) to obtain spatial information. We identified a significant decrease in abundance of proteins related to intestinal absorption, microvillus, and cell junction, whereas proteins involved in innate immunity, in particular the complement cascade, and extracellular matrix organization increased in abundance after IR. Differentially phosphorylated proteins were involved in RNA splicing events and cytoskeletal and cell junction organization. In addition, our analysis points to mitogen-activated protein kinase (MAPK) and cyclin-dependent kinase (CDK) families to be active kinases during IR. Finally, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MSI presented peptide alterations in abundance and distribution, which resulted, in combination with Fourier-transform ion cyclotron resonance (FTICR) MSI and LC-MS/MS, in the annotation of proteins related to RNA splicing, the complement cascade, and extracellular matrix organization. This study expanded our understanding of the molecular changes that occur during IR in the human intestine and highlights the value of the complementary use of different MS-based methodologies.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Humanos , Proteoma , Proteômica/métodos , Reperfusão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
PLoS One ; 16(6): e0253506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143845

RESUMO

BACKGROUND: We developed a jejunal and colonic experimental human ischemia-reperfusion (IR) model to study pathophysiological intestinal IR mechanisms and potential new intestinal ischemia biomarkers. Our objective was to evaluate the safety of these IR models by comparing patients undergoing surgery with and without in vivo intestinal IR. METHODS: A retrospective study was performed comparing complication rates and severity, based on the Clavien-Dindo classification system, in patients undergoing pancreatoduodenectomy with (n = 10) and without (n = 20 matched controls) jejunal IR or colorectal surgery with (n = 10) and without (n = 20 matched controls) colon IR. Secondary outcome parameters were operative time, blood loss, 90-day mortality and length of hospital stay. RESULTS: Following pancreatic surgery, 63% of the patients experienced one or more postoperative complications. There was no significant difference in incidence or severity of complications between patients undergoing pancreatic surgery with (70%) or without (60%, P = 0.7) jejunal IR. Following colorectal surgery, 60% of the patients experienced one or more postoperative complication. Complication rate and severity were similar in patients with (50%) and without (65%, P = 0.46) colonic IR. Operative time, amount of blood loss, postoperative C-reactive protein, length of hospital stay or mortality were equal in both intervention and control groups for jejunal and colon IR. CONCLUSION: This study showed that human experimental intestinal IR models are safe in patients undergoing pancreatic or colorectal surgery.


Assuntos
Cirurgia Colorretal/efeitos adversos , Intestinos/irrigação sanguínea , Isquemia/patologia , Pancreaticoduodenectomia/efeitos adversos , Traumatismo por Reperfusão/patologia , Idoso , Animais , Feminino , Humanos , Isquemia/etiologia , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/patologia , Período Pós-Operatório , Traumatismo por Reperfusão/etiologia , Estudos Retrospectivos
3.
Transplantation ; 104(9): 1952-1958, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32265415

RESUMO

BACKGROUND: Ischemia-reperfusion injury is inevitable during intestinal transplantation (ITx) and executes a key role in the evolution towards rejection. Paneth cells (PCs) are crucial for epithelial immune defense and highly vulnerable to ischemia-reperfusion injury. We investigated the effect of ITx on PC after reperfusion (T0), during follow-up, and rejection. Moreover, we investigated whether PC loss was associated with impaired graft homeostasis. METHODS: Endoscopic biopsies, collected according to center protocol and at rejection episodes, were retrospectively included (n = 28 ITx, n = 119 biopsies) Biopsies were immunohistochemically co-stained for PC (lysozyme) and apoptosis, and PC/crypt and lysozyme intensity were scored. RESULTS: We observed a decrease in PC/crypt and lysozyme intensity in the first week after ITx (W1) compared with T0. There was a tendency towards a larger decline in PC/crypt (P = 0.08) and lysozyme intensity (P = 0.08) in W1 in patients who later developed rejection compared with patients without rejection. Follow-up biopsies showed that the PC number recovered, whereas lysozyme intensity remained reduced. This persisting innate immune defect may contribute to the well-known vulnerability of the intestine to infection. There was no clear evidence that PCs were affected throughout rejection. CONCLUSIONS: This study revealed a transient fall in PC numbers in the early post-ITx period but a permanent reduction in lysozyme intensity following ITx. Further research is needed to determine the potential clinical impact of PC impairment after ITx.


Assuntos
Rejeição de Enxerto/patologia , Intestinos/transplante , Celulas de Paneth/patologia , Traumatismo por Reperfusão/patologia , Adolescente , Apoptose , Contagem de Células , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Muramidase/metabolismo , Estudos Retrospectivos
4.
Ann Surg ; 272(6): 1070-1079, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30614877

RESUMO

BACKGROUND AND OBJECTIVE: Sex differences in responses to intestinal ischemia-reperfusion (IR) have been recognized in animal studies. We aimed to investigate sexual dimorphism in human small intestinal mucosal responses to IR. METHODS: In 16 patients (8 men and 8 women) undergoing pancreaticoduodenectomy, an isolated part of jejunum was subjected to IR. In each patient, intestinal tissue and blood was collected directly after 45 minutes of ischemia without reperfusion (45I-0R), after 30 minutes of reperfusion (45I-30R), and after 120 minutes of reperfusion (45I-120R), as well as a control sample not exposed to IR, to assess epithelial damage, unfolded protein response (UPR) activation, and inflammation. RESULTS: More extensive intestinal epithelial damage was observed in males compared to females. Intestinal fatty acid binding protein (I-FABP) arteriovenous (V-A) concentrations differences were significantly higher in males compared to females at 45I-0R (159.0 [41.0-570.5] ng/mL vs 46.9 [0.3-149.9] ng/mL). Male intestine showed significantly higher levels of UPR activation than female intestine, as well as higher number of apoptotic Paneth cells per crypt at 45I-30R (16.4% [7.1-32.1] vs 10.6% [0.0-25.4]). The inflammatory response in male intestine was significantly higher compared to females, with a higher influx of neutrophils per villus at 45I-30R (4.9 [3.1-12.0] vs 3.3 [0.2-4.5]) and a higher gene expression of TNF-α and IL-10 at 45I-120R. CONCLUSION: The human female small intestine seems less susceptible to IR-induced tissue injury than the male small intestine. Recognition of such differences could lead to the development of novel therapeutic strategies to reduce IR-associated morbidity and mortality.


Assuntos
Resistência à Doença/fisiologia , Mucosa Intestinal/irrigação sanguínea , Doenças do Jejuno/etiologia , Jejuno/irrigação sanguínea , Traumatismo por Reperfusão/complicações , Caracteres Sexuais , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
5.
Cell Rep ; 21(5): 1160-1168, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29091756

RESUMO

Glucagon-like peptide 1 (GLP-1) is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS) administration in mice via a Toll-like receptor 4 (TLR4)-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Íleo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Células Enteroendócrinas/citologia , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Humanos , Íleo/metabolismo , Interleucina-6/deficiência , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ácidos Mirísticos/sangue , Proglucagon/metabolismo , Pró-Proteína Convertase 1/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
6.
Curr Opin Organ Transplant ; 18(3): 298-303, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23449345

RESUMO

PURPOSE OF REVIEW: Ischemia-reperfusion injury is inevitable during intestinal transplantation and can negatively affect the transplant outcome. Here, an overview is provided of the recent advances in the pathophysiological mechanisms of intestinal ischemia-reperfusion injury and how this may impact graft survival. RECENT FINDINGS: The intestine hosts a wide range of microorganisms and its mucosa is heavily populated by immune cells. Intestinal ischemia-reperfusion results in the disruption of the epithelial lining, affecting also protective Paneth cells (antimicrobials) and goblet cells (mucus), and creates a more hostile intraluminal microenvironment. Consequently, both damage-associated molecular patterns as well as pathogen-associated molecular patterns are released from injured tissue and exogenous microorganisms, respectively. These 'danger' signals may synergistically activate the innate immune system. Exaggerated innate immune responses, involving neutrophils, mast cells, platelets, dendritic cells, as well as Toll-like receptors and complement proteins, may shape the adaptive T-cell response, thereby triggering the destructive alloimmune response toward the graft and resulting in transplant rejection. SUMMARY: Innate immune activation as a consequence of ischemia-reperfusion injury may compromise engraftment of the intestine. More dedicated research is required to further establish this concept in man and to design more effective therapeutic strategies to better tolerize intestinal grafts.


Assuntos
Imunidade Inata/fisiologia , Enteropatias/fisiopatologia , Intestinos/transplante , Complicações Pós-Operatórias , Traumatismo por Reperfusão/fisiopatologia , Sobrevivência de Enxerto/imunologia , Humanos
7.
Gut ; 62(2): 250-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22637697

RESUMO

OBJECTIVE: Colonic ischaemia is frequently observed in clinical practice. This study provides a novel insight into the pathophysiology of colon ischaemia/reperfusion (IR) using a newly developed human and rat experimental model. DESIGN: In 10 patients a small part of colon that had to be removed for surgical reasons was isolated and exposed to 60 min of ischaemia (60I) with/without different periods of reperfusion (30R and 60R). Tissue not exposed to IR served as control. In rats, colon was exposed to 60I, 60I/30R, 60I/120R or 60I/240R (n=7 per group). The tissue was snap-frozen or fixed in glutaraldehyde, formalin or methacarn fixative. Mucins were stained with Periodic Acid Schiff/Alcian Blue (PAS/AB) and MUC2/Dolichos biflorus agglutinin (DBA). Bacteria were studied using electron microscopy (EM) and fluorescent in situ hybridisation (FISH). Neutrophils were studied using myeloperoxidase staining. qPCR was performed for MUC2, interleukin (IL)-6, IL-1ß and tumour necrosis factor α. RESULTS: In rats, PAS/AB and MUC2/DBA staining revealed mucus layer detachment at ischaemia which was accompanied by bacterial penetration (in EM and FISH). Human and rat studies showed that, simultaneously, goblet cell secretory activity increased. This was associated with expulsion of bacteria from the crypts and restoration of the mucus layer at 240 min of reperfusion. Inflammation was limited to minor influx of neutrophils and increased expression of proinflammatory cytokines during reperfusion. CONCLUSIONS: Colonic ischaemia leads to disruption of the mucus layer facilitating bacterial penetration. This is rapidly counteracted by increased secretory activity of goblet cells, leading to expulsion of bacteria from the crypts as well as restoration of the mucus barrier.


Assuntos
Colite Isquêmica/metabolismo , Colo/irrigação sanguínea , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Colite Isquêmica/microbiologia , Citocinas/metabolismo , Imunofluorescência , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/microbiologia , Masculino , Mucina-2/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA