Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 10(461)2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28074006

RESUMO

Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.


Assuntos
Comunicação Autócrina , Proliferação de Células/genética , Instabilidade Genômica , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Wnt/genética , Animais , Diferenciação Celular/genética , Autorrenovação Celular , Sobrevivência Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/transplante , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
2.
Stem Cell Res ; 17(3): 607-615, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27838585

RESUMO

Wnt signaling plays a central role in tumor initiation and tumor progression. Mutations in Wnt pathway components, such as the tumor suppressor APC, lead to malignant transformation. While previous studies focused on Wnt-related changes in cancer cells, the impact of aberrant Wnt signaling on the tumor microenvironment is only beginning to emerge. In order to investigate the role of increased Wnt secretion on tumor growth and the microenvironment, we generated a novel germ cell tumor model by overexpressing the Wnt secretion factor Evi/Wls in mouse embryonic stem cells. Evi-overexpressing teratoma were characterized by enhanced tumor growth in supporting a tumor-promoting role of Wnt secretion. Interestingly, enhanced Evi expression correlated with impaired immune cell recruitment. Specifically, T- and B-cell infiltration was reduced in Evi-overexpressing teratomas, which was independent of teratoma size and differentiation. Our study suggests that Wnt secretion impairs immunosurveillance. Since immune cell infiltration has been shown to have prognostic value, the levels of secreted Wnt activity might impact the efficiency of cancer immunotherapy.


Assuntos
Teratoma/imunologia , Teratoma/patologia , Proteínas Wnt/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/imunologia , Humanos , Camundongos , Camundongos SCID , Teratoma/metabolismo , Proteínas Wnt/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...