Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lung Cancer ; 190: 107533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520909

RESUMO

Lung cancer is the leading cause of global cancer-related mortality resulting in âˆ¼ 1.8 million deaths annually. Systemic, molecular targeted, and immune therapies have provided significant improvements of survival outcomes for patients. However, drug resistance usually arises and there is an urgent need for novel therapy screening and personalized medicine. 3D patient-derived organoid (PDO) models have emerged as a more effective and efficient alternative for ex vivo drug screening than 2D cell culture and patient-derived xenograft (PDX) models. In this review, we performed an extensive search of lung cancer PDO-based ex vivo drug screening studies. Lung cancer PDOs were successfully established from fresh or bio-banked sections and/or biopsies, pleural effusions and PDX mouse models. PDOs were subject to ex vivo drug screening with chemotherapy, targeted therapy and/or immunotherapy. PDOs consistently recapitulated the genomic alterations and drug sensitivity of primary tumors. Although sample sizes of the previous studies were limited and some technical challenges remain, PDOs showed great promise in the screening of novel therapy drugs. With the technical advances of high throughput, tumor-on-chip, and combined microenvironment, the drug screening process using PDOs will enhance precision care of lung cancer patients.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Medicina de Precisão/métodos , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pulmão , Organoides/patologia , Microambiente Tumoral
2.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848444

RESUMO

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Assuntos
Antígeno CD47 , Macrófagos , Metástase Neoplásica , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Evasão Tumoral , Humanos , Masculino , Proteínas de Transporte , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Células Tumorais Cultivadas
3.
Cell Rep ; 42(9): 113067, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37659081

RESUMO

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Células Endoteliais , Transdução de Sinais , Diferenciação Celular , Microambiente Tumoral , Linhagem Celular Tumoral
4.
J Transl Genet Genom ; 5: 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322662

RESUMO

Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced technical improvements in cDNA synthesis and amplification, processing and alignment of next generation sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly evolving technical landscape and insights of focused features and strengths in each prominent area of progress.

5.
Cancer Res ; 81(15): 4110-4123, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34045187

RESUMO

Aggressive tumors of epithelial origin shed cells that intravasate and become circulating tumor cells (CTC). The CTCs that are able to survive the stresses encountered in the bloodstream can then seed metastases. We demonstrated previously that CTCs isolated from the blood of prostate cancer patients display specific nanomechanical phenotypes characteristic of cell endurance and invasiveness and patient sensitivity to androgen deprivation therapy. Here we report that patient-isolated CTCs are nanomechanically distinct from cells randomly shed from the tumor, with high adhesion as the most distinguishing biophysical marker. CTCs uniquely coisolated with macrophage-like cells bearing the markers of tumor-associated macrophages (TAM). The presence of these immune cells was indicative of a survival-promoting phenotype of "mechanical fitness" in CTCs based on high softness and high adhesion as determined by atomic force microscopy. Correlations between enumeration of macrophages and mechanical fitness of CTCs were strong in patients before the start of hormonal therapy. Single-cell proteomic analysis and nanomechanical phenotyping of tumor cell-macrophage cocultures revealed that macrophages promoted epithelial-mesenchymal plasticity in prostate cancer cells, manifesting in their mechanical fitness. The resulting softness and adhesiveness of the mechanically fit CTCs confer resistance to shear stress and enable protective cell clustering. These findings suggest that selected tumor cells are coached by TAMs and accompanied by them to acquire intermediate epithelial/mesenchymal status, thereby facilitating survival during the critical early stage leading to metastasis. SIGNIFICANCE: The interaction between macrophages and circulating tumor cells increases the capacity of tumor cells to initiate metastasis and may constitute a new set of blood-based targets for pharmacologic intervention.


Assuntos
Macrófagos/metabolismo , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Próstata/imunologia , Linhagem Celular Tumoral , Humanos , Masculino , Fenótipo
6.
Cell Rep ; 33(2): 108253, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053339

RESUMO

While plasminogen activator inhibitor-1 (PAI-1) is known to potentiate cellular migration via proteolytic regulation, this adipokine is implicated as an oncogenic ligand in the tumor microenvironment. To understand the underlying paracrine mechanism, here, we conduct transcriptomic analysis of 1,898 endometrial epithelial cells (EECs) exposed and unexposed to PAI-1-secreting adipose stromal cells. The PAI-1-dependent action deregulates crosstalk among tumor-promoting and tumor-repressing pathways, including transforming growth factor ß (TGF-ß). When PAI-1 is tethered to lipoprotein receptor-related protein 1 (LRP1), the internalized signaling causes downregulation of SMAD4 at the transcriptional and post-translational levels that attenuates TGF-ß-related transcription programs. Repression of genes encoding the junction and adhesion complex preferentially occurs in SMAD4-underexpressed EECs of persons with obesity. The findings highlight a role of PAI-1 signaling that renders ineffective intercellular communication for the development of adiposity-associated endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Moléculas de Adesão Juncional/metabolismo , Obesidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Smad4/metabolismo , Tecido Adiposo/patologia , Regulação para Baixo/genética , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/complicações , Ligação Proteica , Proteólise , Proteômica , Proteína Smad4/genética , Células Estromais/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Ubiquitina/metabolismo
7.
Cancers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971831

RESUMO

The interplay between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is central to maintain energy homeostasis. It remains to be determined whether there is a mechanism governing metabolic fluxes based on substrate availability in microenvironments. Here we show that menin is a key transcription factor regulating the expression of OXPHOS and glycolytic genes in cancer cells and primary tumors with poor prognosis. A group of menin-associated proteins (MAPs), including KMT2A, MED12, WAPL, and GATA3, is found to restrain menin's full function in this transcription regulation. shRNA knockdowns of menin and MAPs result in reduced ATP production with proportional alterations of cellular energy generated through glycolysis and OXPHOS. When shRNA knockdown cells are exposed to metabolic stress, the dual functionality can clearly be distinguished among these metabolic regulators. A MAP can negatively counteract the regulatory mode of menin for OXPHOS while the same protein positively influences glycolysis. A close-proximity interaction between menin and MAPs allows transcriptional regulation for metabolic adjustment. This coordinate regulation by menin and MAPs is necessary for cells to rapidly adapt to fluctuating microenvironments and to maintain essential metabolic functions.

8.
BMC Med Genomics ; 13(1): 69, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408897

RESUMO

BACKGROUND: Chromothripsis is an event of genomic instability leading to complex chromosomal alterations in cancer. Frequent long-range chromatin interactions between transcription factors (TFs) and targets may promote extensive translocations and copy-number alterations in proximal contact regions through inappropriate DNA stitching. Although studies have proposed models to explain the initiation of chromothripsis, few discussed how TFs influence this process for tumor progression. METHODS: This study focused on genomic alterations in amplification associated regions within chromosome 17. Inter-/intra-chromosomal rearrangements were analyzed using whole genome sequencing data of breast tumors in the Cancer Genome Atlas (TCGA) cohort. Common ERα binding sites were defined based on MCF-7, T47D, and MDA-MB-134 breast cancer cell lines using univariate K-means clustering methods. Nanopore sequencing technology was applied to validate frequent rearrangements detected between ATC loci on 17q23 and an ERα hub on 20q13. The efficacy of pharmacological inhibition of a potentially druggable target gene on 17q23 was evaluated using breast cancer cell lines and patient-derived circulating breast tumor cells. RESULTS: There are five adjoining regions from 17q11.1 to 17q24.1 being hotspots of chromothripsis. Inter-/intra-chromosomal rearrangements of these regions occurred more frequently in ERα-positive tumors than in ERα-negative tumors. In addition, the locations of the rearrangements were often mapped within or close to dense ERα binding sites localized on these five 17q regions or other chromosomes. This chromothriptic event was linked to concordant upregulation of 96 loci that predominantly regulate cell-cycle machineries in advanced luminal tumors. Genome-editing analysis confirmed that an ERα hub localized on 20q13 coordinately regulates a subset of these loci localized on 17q23 through long-range chromosome interactions. One of these loci, Tousled Like Kinase 2 (TLK2) known to participate in DNA damage checkpoint control, is an actionable target using phenothiazine antipsychotics (PTZs). The antiproliferative effect of PTZs was prominent in high TLK2-expressing cells, compared to low expressing cells. CONCLUSION: This study demonstrates a new approach for identifying tumorigenic drivers from genomic regions highly susceptible to ERα-related chromothripsis. We found a group of luminal breast tumors displaying 17q-related chromothripsis for which antipsychotics can be repurposed as treatment adjuncts.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Cromossomos Humanos Par 17/genética , Cromotripsia , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Prognóstico , Taxa de Sobrevida , Transcrição Gênica , Células Tumorais Cultivadas , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
9.
Cancer Res ; 80(7): 1551-1563, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31992541

RESUMO

Cytometry by time-of-flight (CyTOF) simultaneously measures multiple cellular proteins at the single-cell level and is used to assess intertumor and intratumor heterogeneity. This approach may be used to investigate the variability of individual tumor responses to treatments. Herein, we stratified lung tumor subpopulations based on AXL signaling as a potential targeting strategy. Integrative transcriptome analyses were used to investigate how TP-0903, an AXL kinase inhibitor, influences redundant oncogenic pathways in metastatic lung cancer cells. CyTOF profiling revealed that AXL inhibition suppressed SMAD4/TGFß signaling and induced JAK1-STAT3 signaling to compensate for the loss of AXL. Interestingly, high JAK1-STAT3 was associated with increased levels of AXL in treatment-naïve tumors. Tumors with high AXL, TGFß, and JAK1 signaling concomitantly displayed CD133-mediated cancer stemness and hybrid epithelial-to-mesenchymal transition features in advanced-stage patients, suggesting greater potential for distant dissemination. Diffusion pseudotime analysis revealed cell-fate trajectories among four different categories that were linked to clinicopathologic features for each patient. Patient-derived organoids (PDO) obtained from tumors with high AXL and JAK1 were sensitive to TP-0903 and ruxolitinib (JAK inhibitor) treatments, supporting the CyTOF findings. This study shows that single-cell proteomic profiling of treatment-naïve lung tumors, coupled with ex vivo testing of PDOs, identifies continuous AXL, TGFß, and JAK1-STAT3 signal activation in select tumors that may be targeted by combined AXL-JAK1 inhibition. SIGNIFICANCE: Single-cell proteomic profiling of clinical samples may facilitate the optimal selection of novel drug targets, interpretation of early-phase clinical trial data, and development of predictive biomarkers valuable for patient stratification.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Janus Quinase 1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Estudos de Viabilidade , Feminino , Citometria de Fluxo/métodos , Humanos , Janus Quinase 1/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Nitrilas , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA-Seq , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
10.
Commun Biol ; 3: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909204

RESUMO

NAD[P]H:quinone oxidoreductase 1 (NQO1) regulates cell fate decisions in response to stress. Oxidative stress supports cancer maintenance and progression. Previously we showed that knockdown of NQO1 (NQO1low) prostate cancer cells upregulate pro-inflammatory cytokines and survival under hormone-deprived conditions. Here, we tested the ability of NQO1low cells to form tumors. We found NQO1low cells form aggressive tumors compared with NQO1high cells. Biopsy specimens and circulating tumor cells showed biochemical recurrent prostate cancer was associated with low NQO1. NQO1 silencing was sufficient to induce SMAD-mediated TGFß signaling and mesenchymal markers. TGFß treatment decreased NQO1 levels and induced molecular changes similar to NQO1 knockdown cells. Functionally, NQO1 depletion increased migration and sensitivity to oxidative stress. Collectively, this work reveals a possible new gatekeeper role for NQO1 in counteracting cellular plasticity in prostate cancer cells. Further, combining NQO1 with TGFß signaling molecules may serve as a better signature to predict biochemical recurrence.


Assuntos
Plasticidade Celular/genética , NAD(P)H Desidrogenase (Quinona)/genética , Estresse Oxidativo , Neoplasias da Próstata/fisiopatologia , Fator de Crescimento Transformador beta/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias da Próstata/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/fisiologia
11.
Cancers (Basel) ; 11(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805710

RESUMO

Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.

12.
PLoS One ; 13(11): e0207069, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408082

RESUMO

The tongue is uniquely exposed to water-soluble environmental chemicals that may lead to injury or tumorigenesis. However, comparatively little research has focused on the molecular and functional organization of trigeminal ganglia (TG) afferent neurons innervating the tongue. The current study identified and characterized lingual sensory neurons based on a neuronal subtype classification previously characterized in the dorsal root ganglion (DRG) neurons. We employed immunohistochemistry on transgenic reporter mouse lines as well as single-cell PCR of known markers of neuronal subtypes to characterize neuronal subtypes innervating the tongue. Markers expressed in retrogradely labeled TG neurons were evaluated for the proportion of neurons expressing each marker, intensity of expression, and overlapping genes. We found that tongue-innervating sensory neurons primarily expressed CGRP, TRPV1, TrkC, 5HT3A and Parvalbumin. These markers correspond to peptidergic and a subgroup of non-peptidergic C-nociceptors, peptidergic A nociceptors, proprioceptors and myelinated low-threshold mechanoreceptors (LTMRs). Interestingly, as reported previously, we also found several differences between TG and DRG neurons indicating the need for single-cell sequencing of neuronal types based on tissue type within all TG as well as DRG neurons.


Assuntos
Células Receptoras Sensoriais/citologia , Língua/inervação , Animais , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Células Receptoras Sensoriais/metabolismo
13.
Cancer Res ; 78(4): 853-864, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29233929

RESUMO

Increasing evidence suggests the presence of minor cell subpopulations in prostate cancer that are androgen independent and poised for selection as dominant clones after androgen deprivation therapy. In this study, we investigated this phenomenon by stratifying cell subpopulations based on transcriptome profiling of 144 single LNCaP prostate cancer cells treated or untreated with androgen after cell-cycle synchronization. Model-based clustering of 397 differentially expressed genes identified eight potential subpopulations of LNCaP cells, revealing a previously unappreciable level of cellular heterogeneity to androgen stimulation. One subpopulation displayed stem-like features with a slower cell doubling rate, increased sphere formation capability, and resistance to G2-M arrest induced by a mitosis inhibitor. Advanced growth of this subpopulation was associated with enhanced expression of 10 cell-cycle-related genes (CCNB2, DLGAP5, CENPF, CENPE, MKI67, PTTG1, CDC20, PLK1, HMMR, and CCNB1) and decreased dependence upon androgen receptor signaling. In silico analysis of RNA-seq data from The Cancer Genome Atlas further demonstrated that concordant upregulation of these genes was linked to recurrent prostate cancers. Analysis of receiver operating characteristic curves implicates aberrant expression of these genes and could be useful for early identification of tumors that subsequently develop biochemical recurrence. Moreover, this single-cell approach provides a better understanding of how prostate cancer cells respond heterogeneously to androgen deprivation therapies and reveals characteristics of subpopulations resistant to this treatment.Significance: Illustrating the challenge in treating cancers with targeted drugs, which by selecting for drug resistance can drive metastatic progression, this study characterized the plasticity and heterogeneity of prostate cancer cells with regard to androgen dependence, defining the character or minor subpopulations of androgen-independent cells that are poised for clonal selection after androgen-deprivation therapy. Cancer Res; 78(4); 853-64. ©2017 AACR.


Assuntos
Androgênios/metabolismo , Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/genética , RNA/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/patologia
14.
Eur J Clin Invest ; 46(12): 1002-1011, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27696383

RESUMO

BACKGROUND: Collective cell migration, whereby the cell-cell contacts such as E-cadherin are maintained during migration, has only recently emerged, and its detailed mechanisms are still unclear. In this study, the role of Rab11, which functions in recycling endosomes, and its relationship to E-cadherin in colorectal carcinoma were identified, and the role of Rab11 in the collective cell migration of colon cancer cells was clarified. MATERIALS AND METHODS: A total of 107 patients with surgically resected colorectal carcinoma were enrolled in this immunohistochemical study. Relationships between the overexpression of Rab11 and E-cadherin and survival were evaluated. The cell biology of Rab11 overexpression or knock-down in HT-29 colon cells was studied. RESULTS: The expression of Rab11 and E-cadherin was not correlated with the stage of cancer or lymph node metastasis. However, the overall survival was poor in the group of 67 patients with duo-positive Rab11 and E-cadherin expression compared to the group (40 patients) without dual-positive expression (P = 0·038). Rab11 was demonstrated to have a physical interaction with E-cadherin, and overexpression of Rab11 was found to promote collective cell migration through the increased distribution of E-cadherin, which enhanced cell-cell connections. In addition, Rac1 activation and matrix metalloproteinase-2 expressions were upregulated upon Rab11 expression. CONCLUSIONS: This study demonstrated that Rab11 and E-cadherin expressions are indicators of poor survival time in colorectal carcinoma, but that Rab11 overexpression may contribute to increased collective cell invasion in colorectal carcinoma.


Assuntos
Caderinas/metabolismo , Carcinoma/metabolismo , Movimento Celular , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas rab de Ligação ao GTP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma/mortalidade , Carcinoma/patologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Células HT29 , Humanos , Imuno-Histoquímica , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Adulto Jovem , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Biomaterials ; 32(29): 6995-7005, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21696818

RESUMO

In this study, several in vivo and in vitro comparisons were performed to test the possibility of using adipose-derived stem cells (ADSCs), a more convenient cell source than dental pulp stem cells (DPSCs), in tooth regeneration. Using an efficient, non-engineering implantation method, we first demonstrated that both implants of ADSCs and DPSCs were able to grow self-assembled new teeth in adult rabbit extraction sockets with high success rate. The stem cells were necessary because the implants grew no tooth without them. A stepwise comparison showed that the regenerated teeth from these two types of adult stem cells were living with nerves and vascular system and remarkably similar to a normal tooth in many details. Further strictly controlled, side-by-side comparisons between the two types of stem cells also showed that the expression patterns of gene markers and the broad differentiation potentials induced by specific methods in vitro were very similar. Although a few differences were found, they did not affect the tested tooth regeneration in vivo or differentiation in vitro. Furthermore, rabbit ADSCs had a higher growth rate and a better senescence resistance in culture. All these findings suggest that ADSCs, one of the richest adult stem cells in mammals, are very similar and useful as DPSCs for regenerative dentistry.


Assuntos
Tecido Adiposo/citologia , Polpa Dentária/citologia , Células-Tronco Mesenquimais/fisiologia , Regeneração/fisiologia , Dente/citologia , Dente/fisiologia , Adulto , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Coelhos
16.
Int Urogynecol J ; 21(9): 1085-93, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20480140

RESUMO

INTRODUCTION AND HYPOTHESIS: Mesh-augmented reconstructive surgery for pelvic organ prolapse (POP) does not meet clinical expectations. A tissue-engineered fascia equivalent needs to be developed. METHODS: Human vaginal fibroblasts (HVFs) from 10 patients were characterized in vitro. Eligible HVFs and a biodegradable scaffold were used to fabricate a fascia equivalent, which was then transplanted in vivo. RESULTS: The cultured HVFs were divided into high (n = 6) or low (n = 4) collagen I/III ratio groups. Cells of the high-ratio group exhibited significantly higher proliferation potential than those of the low-ratio group (P < 0.05). A fascia equivalent was made with HVFs of the high-ratio group. In the subsequent animal study, a well-organized neo-fascia formation containing HVFs could be traced up to 12 weeks after transplantation. CONCLUSIONS: Our results suggest that a tissue-engineered fascia could be developed from HVFs in vitro and in vivo, which might be an effective treatment for POP in the future.


Assuntos
Fáscia/citologia , Fibroblastos/citologia , Prolapso de Órgão Pélvico/cirurgia , Pelve/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual , Vagina/citologia , Adulto , Idoso , Biópsia , Células Cultivadas , Fáscia/transplante , Feminino , Fibroblastos/transplante , Seguimentos , Humanos , Pessoa de Meia-Idade , Telas Cirúrgicas , Transplante de Tecidos/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...