Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585716

RESUMO

Immunoglobulin (IGH, IGK, IGL) loci in the human genome are highly polymorphic regions that encode the building blocks of the light and heavy chain IG proteins that dimerize to form antibodies. The processes of V(D)J recombination and somatic hypermutation in B cells are responsible for creating an enormous reservoir of highly specific antibodies capable of binding a vast array of possible antigens. However, the antibody repertoire is fundamentally limited by the set of variable (V), diversity (D), and joining (J) alleles present in the germline IG loci. To better understand how the germline IG haplotypes contribute to the expressed antibody repertoire, we combined genome sequencing of the germline IG loci with single-cell transcriptome sequencing of B cells from the same donor. Sequencing and assembly of the germline IG loci captured the IGH locus in a single fully-phased contig where the maternal and paternal contributions to the germline V, D, and J repertoire can be fully resolved. The B cells were collected following a measles, mumps, and rubella (MMR) vaccination, resulting in a population of cells that were activated in response to this specific immune challenge. Single-cell, full-length transcriptome sequencing of these B cells resulted in whole transcriptome characterization of each cell, as well as highly-accurate consensus sequences for the somatically rearranged and hypermutated light and heavy chain IG transcripts. A subset of antibodies synthesized based on their consensus heavy and light chain transcript sequences demonstrated binding to measles antigens and neutralization of measles live virus.

2.
mBio ; 15(1): e0247723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38054729

RESUMO

IMPORTANCE: The COVID-19 pandemic remains a significant public health concern for the global population; the development and characterization of therapeutics, especially ones that are broadly effective, will continue to be essential as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants emerge. Neutralizing monoclonal antibodies remain an effective therapeutic strategy to prevent virus infection and spread so long as they recognize and interact with circulating variants. The epitope and binding specificity of a neutralizing anti-SARS-CoV-2 Spike receptor-binding domain antibody clone against many SARS-CoV-2 variants of concern were characterized by generating antibody-resistant virions coupled with cryo-EM structural analysis and VSV-spike neutralization studies. This workflow can serve to predict the efficacy of antibody therapeutics against emerging variants and inform the design of therapeutics and vaccines.


Assuntos
COVID-19 , Pandemias , Humanos , Epitopos , Pandemias/prevenção & controle , SARS-CoV-2 , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
3.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131698

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has led to over 760 million cases and >6.8 million deaths worldwide. We developed a panel of human neutralizing monoclonal antibodies (mAbs) targeting the SARS-CoV-2 Spike protein using Harbour H2L2 transgenic mice immunized with Spike receptor binding domain (RBD) (1). Representative antibodies from genetically-distinct families were evaluated for inhibition of replication-competent VSV expressing SARS-CoV-2 Spike (rcVSV-S) in place of VSV-G. One mAb (denoted FG-10A3) inhibited infection of all rcVSV-S variants; its therapeutically-modified version, STI-9167, inhibited infection of all tested SARS-CoV-2 variants, including Omicron BA.1 and BA.2, and limited virus proliferation in vivo (1). To characterize the binding specificity and epitope of FG-10A3, we generated mAb-resistant rcVSV-S virions and performed structural analysis of the antibody/antigen complex using cryo-EM. FG-10A3/STI-9167 is a Class 1 antibody that prevents Spike-ACE2 binding by engaging a region within the Spike receptor binding motif (RBM). Sequencing of mAb-resistant rcVSV-S virions identified F486 as a critical residue for mAb neutralization, with structural analysis revealing that both the variable heavy and light chains of STI-9167 bound the disulfide-stabilized 470-490 loop at the Spike RBD tip. Interestingly, substitutions at position 486 were later observed in emerging variants of concern BA.2.75.2 and XBB. This work provides a predictive modeling strategy to define the neutralizing capacity and limitations of mAb therapeutics against emerging SARS-CoV-2 variants. Importance: The COVID-19 pandemic remains a significant public health concern for the global population; development and characterization of therapeutics, especially ones that are broadly effective, will continue to be essential as SARS-CoV-2 variants emerge. Neutralizing monoclonal antibodies remain an effective therapeutic strategy to prevent virus infection and spread with the caveat that they interact with the circulating variants. The epitope and binding specificity of a broadly neutralizing anti-SARS-CoV-2 Spike RBD antibody clone against many SARS-CoV-2 VOC was characterized by generating antibody-resistant virions coupled with cryo-EM structural analysis. This workflow can serve to predict the efficacy of antibody therapeutics against emerging variants and inform the design of therapeutics and vaccines.

4.
mSphere ; 7(1): e0088321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107336

RESUMO

Considering the urgent demand for faster methods to quantify neutralizing antibody titers in patients with coronavirus (CoV) disease 2019 (COVID-19), developing an analytical model or method to replace the conventional virus neutralization test (NT) is essential. Moreover, a "COVID-19 immunity passport" is currently being proposed as a certification for people who travel internationally. Therefore, an enzyme-linked immunosorbent assay (ELISA) was designed to detect severe acute respiratory syndrome CoV 2 (SARS-CoV-2)-neutralizing antibodies in serum, which is based on the binding affinity of SARS-CoV-2 viral spike protein 1 (S1) and the viral spike protein receptor-binding domain (RBD) to antibodies. The RBD is considered the major binding region of neutralizing antibodies. Furthermore, S1 covers the RBD and several other regions, which are also important for neutralizing antibody binding. In this study, we assessed 144 clinical specimens, including those from patients with PCR-confirmed SARS-CoV-2 infections and healthy donors, using both the NT and ELISA. The ELISA results analyzed by spline regression and the two-variable generalized additive model precisely reflected the NT value, and the correlation between predicted and actual NT values was as high as 0.917. Therefore, our method serves as a surrogate to quantify neutralizing antibody titer. The analytic method and platform used in this study present a new perspective for serological testing of SARS-CoV-2 infection and have clinical potential to assess vaccine efficacy. IMPORTANCE Herein, we present a new approach for serological testing for SARS-CoV-2 antibodies using innovative laboratory methods that demonstrate a combination of biology and mathematics. The traditional virus neutralization test is the gold standard method; however, it is time-consuming and poses a risk to medical personnel. Thus, there is a demand for methods that rapidly quantify neutralizing antibody titers in patients with COVID-19 or examine vaccine efficacy at a biosafety level 2 containment facility. Therefore, we used a two-variable generalized additive model to analyze the results of the enzyme-linked immunosorbent assay and found the method to serve as a surrogate to quantify neutralizing antibody titers. This methodology has potential for clinical use in assessing vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática , Modelos Imunológicos , Modelos Estatísticos , Testes de Neutralização/métodos , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/diagnóstico , Estudos de Casos e Controles , Humanos , Análise de Regressão
5.
mBio ; 13(1): e0271721, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038927

RESUMO

Enterovirus infections can cause severe complications, such as poliomyelitis, encephalitis, myocarditis, meningitis, neurological pulmonary edema, and even death. Here, we used genome-wide CRISPR screens to gain new insight into the mechanism by which enteroviruses co-opt host pathways to potentiate replication and propagation. We found that acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) is involved in viral replication organelle formation. ACSL4 is a key component of ferroptosis, an iron-dependent, nonapoptotic programmed cell death. Our results indicated that enteroviruses and coronaviruses can induce ferroptosis via ACSL4. Most importantly, ferroptosis inhibitors, including two FDA-approved drugs, rosiglitazone (ROSI; ACSL4 inhibitor) and pioglitazone (PIO; ACSL4 inhibitor), decreased the viral load of human enteroviruses and coronaviruses, suggesting that ACSL4 is a target for counteracting viral infection. IMPORTANCE We provide the first evidence for the role of ACSL4 in enterovirus replication organelle formation. Moreover, both enteroviruses and coronaviruses induce ferroptosis via ACSL4. These findings establish a novel regulatory mechanism for viral replication. The inhibition of ACSL4 by ferroptosis inhibitors can reduce viral yields of enteroviruses and coronaviruses, including SARS-CoV-2, implying that ACSL4-mediated ferroptosis is a promising therapeutic target for viral diseases.


Assuntos
COVID-19 , Infecções por Enterovirus , Enterovirus , Ferroptose , Humanos , Coenzima A Ligases/metabolismo , SARS-CoV-2/metabolismo , Replicação Viral , Organelas/metabolismo
6.
Nat Commun ; 12(1): 4598, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312390

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected at least 180 million people since its identification as the cause of the current COVID-19 pandemic. The rapid pace of vaccine development has resulted in multiple vaccines already in use worldwide. The contemporaneous emergence of SARS-CoV-2 'variants of concern' (VOC) across diverse geographic locales underscores the need to monitor the efficacy of vaccines being administered globally. All WHO designated VOC carry spike (S) polymorphisms thought to enable escape from neutralizing antibodies. Here, we characterize the neutralizing activity of post-Sputnik V vaccination sera against the ensemble of S mutations present in alpha (B.1.1.7) and beta (B.1.351) VOC. Using de novo generated replication-competent vesicular stomatitis virus expressing various SARS-CoV-2-S in place of VSV-G (rcVSV-CoV2-S), coupled with a clonal 293T-ACE2 + TMPRSS2 + cell line optimized for highly efficient S-mediated infection, we determine that only 1 out of 12 post-vaccination serum samples shows effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralize S from B.1.1.7 and exhibit only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/genética , Feminino , Células HEK293 , Humanos , Soros Imunes/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Testes de Neutralização , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinação/métodos , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/imunologia
7.
medRxiv ; 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031663

RESUMO

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.

8.
Res Sq ; 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33851150

RESUMO

The novel pandemic betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected at least 120 million people since its identification as the cause of a December 2019 viral pneumonia outbreak in Wuhan, China1,2. Despite the unprecedented pace of vaccine development, with six vaccines already in use worldwide, the emergence of SARS-CoV-2 'variants of concern' (VOC) across diverse geographic locales have prompted re-evaluation of strategies to achieve universal vaccination3. All three officially designated VOC carry Spike (S) polymorphisms thought to enable escape from neutralizing antibodies elicited during initial waves of the pandemic4-8. Here, we characterize the biological consequences of the ensemble of S mutations present in VOC lineages B.1.1.7 (501Y.V1) and B.1.351 (501Y.V2). Using a replication-competent EGFP-reporter vesicular stomatitis virus (VSV) system, rcVSV-CoV2-S, which encodes S from SARS coronavirus 2 in place of VSV-G, and coupled with a clonal HEK-293T ACE2 TMPRSS2 cell line optimized for highly efficient S-mediated infection, we determined that only 1 out of 12 serum samples from a cohort of recipients of the Gamaleya Sputnik V Ad26 / Ad5 vaccine showed effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralized S from B.1.1.7 and showed only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.

9.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903248

RESUMO

Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.


Assuntos
Vírus do Sarampo/genética , Sarampo/genética , Panencefalite Esclerosante Subaguda/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Humanos , Sarampo/patologia , Sarampo/virologia , Vírus do Sarampo/patogenicidade , Mutação/genética , Neurônios/patologia , Neurônios/virologia , Panencefalite Esclerosante Subaguda/patologia , Panencefalite Esclerosante Subaguda/virologia , Células Vero
10.
medRxiv ; 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-33821288

RESUMO

The novel pandemic betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected at least 120 million people since its identification as the cause of a December 2019 viral pneumonia outbreak in Wuhan, China. Despite the unprecedented pace of vaccine development, with six vaccines already in use worldwide, the emergence of SARS-CoV-2 'variants of concern' (VOC) across diverse geographic locales suggests herd immunity may fail to eliminate the virus. All three officially designated VOC carry Spike (S) polymorphisms thought to enable escape from neutralizing antibodies elicited during initial waves of the pandemic. Here, we characterize the biological consequences of the ensemble of S mutations present in VOC lineages B.1.1.7 (501Y.V1) and B.1.351 (501Y.V2). Using a replication-competent EGFP-reporter vesicular stomatitis virus (VSV) system, rcVSV-CoV2-S, which encodes S from SARS coronavirus 2 in place of VSV-G, and coupled with a clonal HEK-293T ACE2 TMPRSS2 cell line optimized for highly efficient S-mediated infection, we determined that only 1 out of 12 serum samples from a cohort of recipients of the Gamaleya Sputnik V Ad26 / Ad5 vaccine showed effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralized S from B.1.1.7 and showed only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.

11.
mBio ; 12(1)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593976

RESUMO

The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week.IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.


Assuntos
COVID-19/diagnóstico , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Testes de Neutralização
12.
Front Immunol ; 12: 759688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987505

RESUMO

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Saliva/virologia , Vacinação
13.
J Infect Dis ; 223(6): 957-970, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367897

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and -RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin isotypes capable of blocking infection. METHODS: We studied spike- and RBD-specific immunoglobulin isotypes in convalescent and acute plasma/serum samples using a multiplex bead assay. We also determined virus neutralization activities in plasma and serum samples, and purified immunoglobulin fractions using a vesicular stomatitis pseudovirus assay. RESULTS: Spike- and RBD-specific immunoglobulin (Ig) M, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions' neutralization potency. IgA also exhibited neutralizing activity, but with lower potency. CONCLUSION: IgG, IgM, and IgA are critical components of convalescent plasma used for treatment of coronavirus disease 2019 (COVID-19).


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/terapia , Imunoglobulina A/sangue , Imunoglobulina M/sangue , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Teste para COVID-19 , Feminino , Humanos , Imunização Passiva , Imunoglobulina A/uso terapêutico , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/uso terapêutico , Imunoglobulina M/uso terapêutico , Masculino , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia , Soroterapia para COVID-19
14.
medRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33173891

RESUMO

BACKGROUND: SARS-CoV-2 has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and - RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin (Ig) isotypes capable of blocking infection. METHODS: We studied spike- and RBD-specific Ig isotypes in convalescent and acute plasma/sera using a multiplex bead assay. We also determined virus neutralization activities in plasma, sera, and purified Ig fractions using a VSV pseudovirus assay. RESULTS: Spike- and RBD-specific IgM, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions' neutralization potency. IgA also exhibited neutralizing activity, but with lower potency. CONCLUSION: IgG, IgM and IgA are critical components of convalescent plasma used for COVID-19 treatment.

15.
mBio ; 11(4)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843550

RESUMO

Paramyxoviruses are negative-sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here, we used the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) (DVG-high SeV) generates heterogenous populations of cells. Cells enriched in full-length (FL) virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here, we took advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examined the roles of matrix protein and nucleoprotein and determined that their presence is not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative analyses of protein abundance and localization in DVG-high and FL-virus-high (FL-high) cells, we identified viral polymerase complex component protein L and, specifically, its cofactor C as interactors with Rab11a. We found that accumulation of L and C proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells containing viruses that remain in replication phases.IMPORTANCE Paramyxoviruses are members of a family of viruses that include a number of pathogens imposing significant burdens on human health. In particular, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or directly acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and co-opt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here, we used the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We found that the viral polymerase components large protein L and accessory protein C are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.


Assuntos
Endossomos/virologia , Ribonucleoproteínas/metabolismo , Vírus Sendai/fisiologia , Montagem de Vírus , Células A549 , Linhagem Celular , Humanos , Ribonucleoproteínas/genética , Vírus Sendai/enzimologia , Vírus Sendai/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
16.
medRxiv ; 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32817961

RESUMO

The global COVID-19 pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the SARS-CoV-2 spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous BSL3 conditions which limits high throughput screening of patient and vaccine sera. Myriad BSL-2 compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making inter-group comparisons difficult. To address these limitations, we developed a standardized VNA using VSVΔG-based CoV-2-S pseudotyped particles (CoV2pp) that can be robustly produced at scale and generate accurate neutralizing titers within 18 hours post-infection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S ELISA and live virus neutralizations in confirmed convalescent patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n>120). Our data show that absolute (abs) IC50, IC80, and IC90 values can be legitimately compared across diverse cohorts, highlight the substantial but consistent variability in neutralization potency across these cohorts, and support the use of absIC80 as a more meaningful metric for assessing the neutralization potency of vaccine or convalescent sera. Lastly, we used our CoV2pp in a screen to identify ultra-permissive 293T clones that stably express ACE2 or ACE2+TMPRSS2. When used in combination with our CoV2pp, we can now produce CoV2pp sufficient for 150,000 standardized VNA/week.

17.
Nucleic Acids Res ; 45(1): 271-287, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899653

RESUMO

Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.


Assuntos
Enterovirus/genética , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/genética , Células Musculares/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Enterovirus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Sítios Internos de Entrada Ribossomal , Lisina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Musculares/virologia , Mutação , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Ubiquitinação
18.
PLoS Pathog ; 12(10): e1005959, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27780225

RESUMO

The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Enterovirus Humano A , Regulação Viral da Expressão Gênica/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Sítios Internos de Entrada Ribossomal/fisiologia , Proteínas Virais/metabolismo , Regiões 5' não Traduzidas/fisiologia , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Immunoblotting , Imunoprecipitação , Sítios Internos de Entrada Ribossomal/genética , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação a RNA
19.
Nucleic Acids Res ; 42(20): 12789-805, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25352551

RESUMO

The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>10(5) copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5' untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.


Assuntos
Regiões 5' não Traduzidas , Enterovirus Humano A/genética , Regulação Viral da Expressão Gênica , Biossíntese de Proteínas , Pequeno RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Ribonuclease III/metabolismo , Proteínas Virais/biossíntese
20.
Expert Opin Biol Ther ; 14(10): 1455-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24989170

RESUMO

INTRODUCTION: Enterovirus 71 (EV71) is an etiological agent that causes severe neurological complications in children. EV71 outbreaks have occurred throughout the Asia-Pacific region, posing a severe global public health threat; however, no specific therapeutic strategy exists for treating EV71-infected children. AREAS COVERED: Five manufacturers have produced inactivated EV71 whole virus vaccines in mainland China, Taiwan, and Singapore, which have completed Phase III (mainland China) and Phase I (Taiwan and Singapore) clinical trials. Various EV71 vaccine candidates are being researched in animal models, including live-attenuated virus vaccine, recombinant VP1 vaccine, VP1-based DNA vaccine, synthetic peptide vaccine and virus-like particle vaccine. In this review, the present situation is summarized, and feasible improvements to the EV71 vaccine are explored. EXPERT OPINION: Although inactivated EV71 vaccines are safe, efficient and elicit strong immune responses to protect adults, children and infants against infection, the quality control of production is critical.


Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Humanos , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...