Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 7(24): 2002494, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344133

RESUMO

A record high zT of 2.2 at 740 K is reported in Ge0.92Sb0.08Te single crystals, with an optimal hole carrier concentration ≈4 × 1020 cm-3 that simultaneously maximizes the power factor (PF) ≈56 µW cm-1 K-2 and minimizes the thermal conductivity ≈1.9 Wm-1 K-1. In addition to the presence of herringbone domains and stacking faults, the Ge0.92Sb0.08Te exhibits significant modification to phonon dispersion with an extra phonon excitation around ≈5-6 meV at Γ point of the Brillouin zone as confirmed through inelastic neutron scattering (INS) measurements. Density functional theory (DFT) confirmed this phonon excitation, and predicted another higher energy phonon excitation ≈12-13 meV at W point. These phonon excitations collectively increase the number of phonon decay channels leading to softening of phonon frequencies such that a three-phonon process is dominant in Ge0.92Sb0.08Te, in contrast to a dominant four-phonon process in pristine GeTe, highlighting the importance of phonon engineering approaches to improving thermoelectric (TE) performance.

2.
ACS Omega ; 4(3): 5442-5450, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459709

RESUMO

Single-crystalline SnSe has attracted much attention because of its record high figure-of-merit ZT ≈ 2.6; however, this high ZT has been associated with the low mass density of samples which leaves the intrinsic ZT of fully dense pristine SnSe in question. To this end, we prepared high-quality fully dense SnSe single crystals and performed detailed structural, electrical, and thermal transport measurements over a wide temperature range along the major crystallographic directions. Our single crystals were fully dense and of high purity as confirmed via high statistics 119Sn Mössbauer spectroscopy that revealed <0.35 at. % Sn(IV) in pristine SnSe. The temperature-dependent heat capacity (C p) provided evidence for the displacive second-order phase transition from Pnma to Cmcm phase at T c ≈ 800 K and a small but finite Sommerfeld coefficient γ0 which implied the presence of a finite Fermi surface. Interestingly, despite its strongly temperature-dependent band gap inferred from density functional theory calculations, SnSe behaves like a low-carrier-concentration multiband metal below 600 K, above which it exhibits a semiconducting behavior. Notably, our high-quality single-crystalline SnSe exhibits a thermoelectric figure-of-merit ZT ∼1.0, ∼0.8, and ∼0.25 at 850 K along the b, c, and a directions, respectively.

3.
Adv Mater ; 24(18): 2469-73, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22488570

RESUMO

A new multiferroic material, CuBr(2) , is reported for the first time. CuBr(2) has not only a high transition temperature (close to liquid nitrogen temperature) but also low dielectric loss and strong magnetoelectric coupling. These findings reveal the importance of anion effects, in the search for the high temperature multiferroics materials among these low-dimensional spin systems.


Assuntos
Brometos/química , Cobre/química , Ânions/química , Cristalografia por Raios X , Magnetismo , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...